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Abstract—An algorithm for constructing image mosaics from multiple,
uncalibrated, weak-perspective views of the human retina is presented and
analyzed. It builds on a previously described algorithm for registering pairs of
retinal images using a noninvertible, 12-parameter, quadratic image
transformation model and a hierarchical, robust estimation technique. The major
innovation presented here is a linear, feature-based, noniterative method for jointly
estimating consistent transformations of all images onto the mosaic “anchor
image.” Constraints for this estimation are derived from pairwise registration both
directly with the anchor image and indirectly between pairs of nonanchor images.
An incremental, graph-based technique constructs the set of registered image
pairs used in the joint solution. The joint estimation technique allows images that
do not overlap the anchor frame to be successfully mosaiced, a particularly
valuable capability for mosaicing images of the retinal periphery. Experimental
analysis of the algorithm on data sets from 16 eyes shows the average overall
median transformation error in final mosaic construction to be 0.76 pixels. Overall,
the technique is simpler, more accurate, and offers broader coverage than
previously published methods.

Index Terms—Robust estimation, image mosaic, image montage, transformation
estimation, retinal imaging, joint estimation.

*

1 INTRODUCTION

BUILDING a mosaic image from a sequence of partial views is a
powerful means of obtaining a broader view of a scene than is
available with a single view. Research on automated mosaic
construction has been underway for at least 25 years (see early
work in [17], [18], [20], [29]). The range of applications includes
panoramic image formation [22], [21], virtual reality [8], [28], image
compression [15], [14], change detection, superresolution [7],
tracking [10], navigation [11], indexing and key frame identifica-
tion [15], document compositing [31], and cartography [30]. One
application domain in which mosaics are particularly valuable is in
the diagnosis and treatment of diseases of the retina [1], [3], [9],
[16]. A seamless mosaic formed from multiple fundus camera
images aids in diagnosis, provides a means for monitoring the
progression of diseases, and may be used as a spatial map during
surgical treatment [1], [3].

Several issues must be addressed in designing a mosaic
construction technique. First, the coordinate system in which to
build the mosaic must be established. Second, an appropriate
mathematical model of the image-to-mosaic transformation must be
developed. Most work in mosaic construction uses low-order,

o A. Can and B. Roysam are with the Department of Electrical, Computer,
and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY
12180-3590. E-mail: alican@alum.rpi.edu, roysab@rpi.edu.

o C.V. Stewart is with the Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, NY 12180-3590.

E-mail: stewart@cs.rpi.edu.

o H.L. Tanenbaum is with The Center for Sight, 349 Northern Blvd., Albany,

NY 12204. E-mail: howI@albany.net.

Manuscript received 25 July 2000; revised 17 May 2001; accepted 25 July
2001.

Recommended for acceptance by Y.-F. Wang.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 112587.

0162-8828/02/$17.00 © 2002 IEEE



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 3, MARCH 2002 413

Fig. 1. A mosaic of two retinal fundus images combined using the pairwise
registration algorithm [6]. The blood vessels are almost perfectly aligned. The
boundary between the images is visible because of image illumination differences.

invertible transformations derived by assuming that the scene is
roughly planar [2], [15] or that the images are taken by a camera
rotated about its optical center [28]. Third and most important, the
parameters of this transformation must be estimated for each image
that is to be mosaiced. Finally, the intensity values of the
transformed images must be combined to produce the final mosaic.

In a companion paper [6], we have addressed the problem of
registering a pair of retinal images, effectively solving the two-
image mosaicing problem. Highlights of the algorithm include
derivation of a new 12-parameter image-to-image transformation
model that accounts for the curvature of the retina and a
hierarchical, robust, feature-based parameter estimation technique.
The registration accuracy of this algorithm on 1,024 x 1,024 images
is 0.83 pixels, greatly improving upon prior efforts (see discussion
in [6]). A mosaic formed by registering a pair of images is shown in
Fig. 1. The current paper addresses the problem of forming a
mosaic from an arbitrary number of retinal images.

At first glance, it appears that the ability to register a pair of
images is sufficient for the problem of forming a mosaic of the
entire retina from multiple partial views. Hypothetically, if one
image can be established as the “anchor image” on which to base
the mosaic, then the transformation of each remaining image onto
this anchor may be estimated using pairwise registration and the
transformed images may be combined. Unfortunately, as observed
in [24], [27] for planar, spherical, and panoramic mosaics, this
approach does not ensure proper multi-image alignment. In the
particular case of retinal image mosaicing, two problems arise:

Nonoverlapping images. Some images may not overlap the
anchor image at all, making direct computation of the
transformation impossible. Other images may have insufficient
overlap to compute a stable transformation. The straightfor-
ward solution is to compose transformations using an “inter-
mediate” image [1]. This is problematic, however, both
mathematically and practically: Our transformation model is
not closed under composition [6] and repeated application of
transformations magnifies errors [24].

Mutually inconsistent transformations. The other problem arises
even when image-to-anchor transformations can be estimated.
Each image may individually register accurately with the
anchor image and the nonanchor images may even register
accurately with each other, but this does not ensure that the
transformations onto the anchor image are mutually consistent!

Outside the region where the images overlap the anchor image,
there are no direct constraints to ensure that the transforma-
tions closely align the blood vessel structure (see Fig. 2).

Our goal in this paper is to develop an algorithm to construct
extremely accurate, seamless mosaics of N > 2 retinal images. We
introduce a technique that uses feature correspondence sets
resulting from pairwise registration [6] of nonanchor image pairs
to jointly estimate the transformations of all images onto the
anchor image. To form the feature correspondence sets without
having to apply the pairwise registration algorithm to all image
pairs prior to the joint estimation, we describe a graph-based
technique to incrementally determine which pairs might overlap
sufficiently and apply the algorithm only to these pairs. Experi-
mental analysis of the overall mosaic construction algorithm on
16 retinal image data sets will demonstrate its effectiveness.

The resulting algorithm is similar in many respects to the
important recent work of Sawhney et al. [24] and of Shum and
Szeliski [27], [26] on globally consistent mosaics, yet it has
important differences as well. Most notably, our algorithm is
feature-based throughout; it works on a 12-parameter, noninver-
tible transformation; the final estimation of image-to-anchor
transformations is linear; and the incremental, graph-based
technique efficiently determines which images to match pairwise
without relying on the ordering imposed by a video sequence.
Finally, the algorithm is developed for the important application of
constructing retinal image mosaics, going beyond prior work in the
area by being fully automatic, by producing subpixel alignment
accuracy in the mosaic, and by allowing broader coverage of the
retina.

2 PAIRWISE REGISTRATION

This section summarizes our pairwise registration algorithm which
forms the background for the current work [6], [5].

2.1 Transformation Model

In deriving the image-to-image transformation model, the retina is
modeled as a quadratic surface, rigid transformations between
views are assumed, and a weak-perspective camera model is used
[19]. Let I, be one image frame, let I, be a second image frame,
and let p = (z,7)" be a pixel location in I,,,. Define

X(p) = (2%, vy, % 2,5, 1) . (1)

Combining camera, surface, and motion models, we have derived
the following equation for the transformed pixel location p’ in
frame I,

p, = Omn X(p), (2)

where ©,,, is a 2 x 6 parameter matrix. This model generalizes
earlier affine, planar, or pure rotation motion models used in other
mosaic construction work [15], [28], [24]. It is the second-order
Taylor expansion of the general interframe mapping function, it is
not closed under composition, and it is not invertible. Despite the
approximations used and the noninvertibility, the model is
accurate to less than a pixel on 1,024 x 1,024 retinal images [6].

2.2 Robust, Hierarchical Estimation of ©,,,,

Given two images, I, and I,, the 12 parameters of ©,,, can be
estimated using a hierarchical, feature-based technique that
simultaneously estimates the transformation parameters and the
feature correspondences. For the joint estimation, the resulting
feature correspondences are the most important results. The
features are image locations, p,, in I, and p,, in I,, of vascular
landmarks—branching and cross-over points of the retinal
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Fig. 2. lllustrating mutually inconsistent transformations produced by pairwise registration and the impact of the joint estimation technique. An example mosaic formed by
independently computing the transformation of each of the two images in Fig. 1 onto a third (anchor) image is shown in (a). The resulting mosaic is not seamless,
especially in the outlined region, which does not overlap the anchor image (see (b)). The joint estimation technique produces near perfect alignment in the outlined region

(c) and throughout the mosaic.

vasculature—detected using an exploratory vascular tracing and
intersection detection algorithm [4], [25].

The hierarchical estimation technique has three levels. It starts
by forming all possible correspondences between landmarks, and
then estimates just a translation vector using a similarity-weighted
histogram. Correspondences roughly consistent with the peak of
the histogram are saved. At the next level, an affine transformation
between images is estimated based on the reduced correspondence
set using least-median of squares (LMS) [23]. The resulting
transformation is used to initialize an M-estimator [12] to estimate
the quadratic transformation parameters, ©,,,. When there is at
most one correspondence (p,,;, P,;) for each landmark this
estimate is

O = argmin
o

> olllpg = O X(pri)11/6)- 3)

(PinisPuj)

Here, p is a “robust loss function” that grows subquadratically and
¢ is a robust scale estimate. Minimization uses an iteratively
reweighted least squares technique [13], with weight function
w(u) = p'(u)/u. This minimization is augmented as described in
[5], [6] to account for nonunique correspondences.

Following hierarchical estimation, two more steps are applied
before the final transformation estimate is determined. First, for
each surviving, unique correspondence, (p,, ;, Py ;). the position of
P, ; in I, is refined to subpixel accuracy using normalized sum-of-
squared-differences (SSD) matching. Second, unmatched features
that fall within the region of overlap in either image are matched
against the other image using SSD, producing additional corre-
spondences. The final M-estimate of the quadratic transformation

is computed using the refined feature positions and the added
correspondences. These positions and correspondences are pre-
served for the joint estimation. A sample registration result is
shown in Fig. 1.

After computing the transformation estimate, an acceptance/
rejection decision is made. A subset of the blood vessel centerline
points in I,,, detected during recursive tracing is transformed onto
I,, using the estimated transformation and, for each one that falls
within image I,, the distance to the closest centerline in I, is
computed. The median of these distances is taken as the matching
error, referred to as the centerline error measure (CEM). Experi-
mental evaluation indicates that a 1.5 pixel error threshold is
sufficient to prevent false acceptance of incorrect registration
results [6].

3 JOINT ESTIMATION OF THE TRANSFORMATIONS

Given an anchor image, Ij, on which to build the mosaic, the main
problem is estimating the quadratic transformations (2) from the
remaining images, Ii,...,Iy, onto the coordinate system of I. In
other words, the goal is to estimate image-to-anchor transforma-
tion parameter matrices ©,,...,0On. The simple method would
be to register each image I; individually with I, using the
technique described in the previous section, but we have shown
(Fig. 2) that this fails to produce accurate alignment outside the
original anchor image. To ensure accurate alignment throughout
the mosaic, we need to use constraints from pairwise registration
of nonanchor images in estimating the transformations (see Fig. 3).
The issues then become which nonanchor pairs to register and how
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Fig. 3. Pairwise image registrations represented as a graph. The solid edges in the graph show registration pairs involving the anchor image, I. The corresponding
image features for each pair form a set of “direct constraints.” The broken edges show registration pairs between nonanchor images. Corresponding image features for

each pair form a set of “indirect constraints.”

to use the matching information obtained to constrain the image-
to-anchor transformations. This section addresses the second issue,
creating what we refer to as the “joint solution” and the next
section addresses the first. The order of presentation is reversed
because the joint solution is used incrementally in establishing the
pairwise registrations.

3.1 Notation

Let the image index set be Z = {0,1,..., N}, with [, the desired
anchor image. Let P be the set of pairwise registrations: {m,n} € P
if a pairwise registration has been established between images I,,,
and I,. No ordering is assumed in these pairs since both the
mappings, I, onto I,, and I, onto I,, may be estimated from
corresponding landmark locations, despite the fact that the
transformation model (2) itself is not invertible." Finally, let Pp =
{{m,0} € P} denote the set of registration pairs involving the
anchor image and let P; = {{m,n} € P|m,n >0} denote the
other registration pairs. The former set contains what we term
“direct constraints,” while the latter contains what we call the
“indirect constraints.”

We turn now to the landmarks and the matches. For each image
I, let p,,;, 1 <i < Ly, be the landmark location vectors detected
during the recursive tracing procedure. For each (m,n) € P, let
C(m,n) be the correspondence set resulting from pairwise
registration. Specifically, (i,j) € C(m,n) if the feature at location
P.,; in image I,,, corresponds to the feature at location p,, ; in image
I,,. This notation must be extended to describe the changes in
landmark feature positions and increases in the number of features
occurring just before the end of pairwise registration. Each time a
new feature is added, say to I, it is appended to the end of the list
and L,, is incremented. (These features are not currently used
when I, is subsequently registered with a different image.) For
existing features, let pj,; and p;
positions as a result of registering I,,, to I,. In general, only one
of these positions will be altered from the original. Finally, let
Wi n:i,; e the final robust weight for the matching pair, scaled by
1/0},,, where 0,,, is the robust scale estimate determined while
matching I, to I,,. This ensures that less reliable matches receive
lower weights individually and overall.

denote refined landmark

1. This follows from the accuracy of the transformation model itself.

3.2 Linear Joint Solution

The intuition behind the joint solution is that any corresponding
pair of landmark feature locations should be mapped onto the
same mosaic location. One method for doing this starts by
establishing equivalence classes between landmark features in
the different images, effectively identifying all features in the
images that correspond to the same retinal feature location.
Constraints may then be built into the estimation equations to
ensure that these map to the same location on the mosaic. To do
this, the actual location on the mosaic must be estimated for each
equivalence class at the same time that the image-to-anchor
transformations are being estimated. While this will work, it leads
to a coupled, nonlinear estimation problem (see discussion in [27]).
Instead, we choose a second and much simpler method.

The idea is to eliminate any attempt to establish equivalence
classes between features beyond pairs of correspondences. If p;, ;
and p;; are corresponding (refined) landmark locations from
pairwise matching of nonanchor images I,, and I,, then the
estimated image-to-anchor transformation parameters ém.o and
©,.0 must map p,,; and p;'; to (approximately) the same anchor
frame location. We do not try to directly enforce consistency with
other correspondences for p,,; or other correspondences for p,, ;.
As a result, the final location for p,,; and p,; need not be
estimated explicitly.

This discussion leads to the following objective function for
joint estimation:

5(('-)1,07 sy eN,O)
= > > w0 OmoX(®),,) — pi

{(ml{m0}ePp} {(i.))eC(m.0)} (4)
+ Z Z W, nsi,j emox(p:lrm) - enOX(pi])HZ

{mmn}ePr} {(ij)eCimn)}

The first summation includes the individual image-to-anchor
constraint terms—the direct constraint sets. The second summation
represents the coupling from pairwise constraints—the indirect
constraint sets (Fig. 3). Images I,,, that were not directly registered
to the anchor image only contribute indirect constraint sets. If there
are no direct constraint sets, then a trivial solution (all 0’s in each
0,,0) minimizes &.

3.3 Minimization

Minimizing £ to estimate ©,...,0x is a linear problem. This
can be seen by calculating the derivative of £ with respect to each
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term in each O, matrix. Estimation of the terms in the first row of
the parameter matrices ©; can be separated from estimation of the
terms in the second row. Each depends on the inverse of the same
6N x 6N matrix.

This can be shown clearly and in more detail by rewriting (4) in
matrix notation. Let ®; be a 6N element column vector formed by
concatenating the first row of each matrix ©;, in order, and then
taking the transpose. Let ®; be formed similarly from the second
row of each ©,. The goal is to estimate the parameters of these
vectors. We form two different data matrices, Xp and X;, two
diagonal weight matrices, Wp and W, and column vectors u and
v. For each direct constraint term, wy, . ; @m‘oX(p?m) - p’o’fjHQ, a
row of the form

(0---0X(p),;)" 0---0)

is entered into X, where 6(m — 1) 0s precede X(p? ;)" and 6(N —
m) Os follow. Also, w,,,; is entered into the corresponding
diagonal entry of W and the z and y terms of pg; are entered into
the corresponding rows of u and v. For each indirect constraint
term, wm,n;i‘jH(—),,L()X(pﬁl’i) - @)n“)X(pij)H, a row of the form
(0---0X(pp,)" 0---0 =X(p},)" 0---0)

n,J

is entered into X; (assuming m < n), where 6(m — 1) Os precede
X(p% )", 6(N —m) 0s follow X(p}{fi)T, and 6(n —m — 1) Os are in
between. Also, Wi, 1S entered into the corresponding diagonal
entry of W;. With these matrix notations, we can rewrite (4) as
follows:

E(®1,®y) =(Xp®; —u) Wp(Xp®, —u)
+ (Xp®y — v) Wp(Xp®y — V) (5)
(X)) W (X®)) + (XDy) Wi (X1®,).

Taking the derivatives with respect to ®; and ®,, setting each
equal to 0, and solving yields the estimate

&) = (XOWpXxp + ATW, X)) AW,

&y = (XEWpXp + ATW X)) AW v, ©

From these estimates, the individual transformation parameter

matrices, ©,,, may be recovered immediately.

4 FORMING THE CORRESPONDENCE GRAPH

Given the above linear technique for jointly estimating the
transformations of all images onto the anchor frame, we still have
the problem of determining which pairs of nonanchor images to
register pairwise to form indirect constraints. In effect, this is the
“topology” problem defined in [24]. Here, we can not assume any
ordering to the image sequence to aid in solving the problem.
This may be formulated as a graph theoretic problem. The
image index set Z determines the vertices of the graph and the
image correspondence set P defined above, when built, forms the
edges. Clearly, the graph must be connected, but connectivity is
not sufficient. The example shown in the introduction illustrates
this (Fig. 2). To obtain maximal consistency between transforma-
tions, we attempt to build the largest possible set of indirect
constraints for any given set of images. In a graph theoretic sense,
this means that we attempt to build a maximally connected graph.
The simple means for building a maximally connected graph is
to apply the pairwise registration algorithm to all O(N?) pairs. We
can do better by incrementally constructing the graph using each
image in turn as the temporary anchor. Initially, all images are
registered pairwise against the anchor. Edges are added to the
graph between the vertices corresponding to successfully regis-
tered pairs. Subsequently, when a new image is chosen as the

(temporary) anchor, the partially constructed graph is used in the
joint solution (6) to predict the transformations onto this anchor
and tell which images do not overlap it. Pairwise registration with
the anchor is not performed for such images. Overall, this
procedure runs pairwise matching O(N?) times in the worst case
and runs the joint solution O(N) times.” In practice, approximately
45 percent of the registration pairs are discarded due to insufficient
overlap without running the registration algorithm.

5 GRAYSCALE MOSAIC SYNTHESIS ALGORITHM

For any image, I, chosen as the anchor image, the constructed
correspondence graph is used to determine which constraint sets
are direct and which are indirect and the joint solution (6) is used
to compute the image-to-anchor transformation estimates
(:)1‘0, R éN‘U‘ In constructing the mosaic, each image I,, is
mapped to a new image I, in the anchor coordinate system and
then the images I are combined. The intensities of I,, are
normalized prior to mapping.

The mapping of discrete pixels poses a problem because the
transformation function is not algebraically invertible. The usual
method would be to inverse map each pixel location (u,v) in I,
back to I, and interpolate from the surrounding (discrete) pixel
locations. We can do this here as well by numerically inverting the
transformation ©,,. This requires an initial forward mapping,
which is taken from the center pixel in I,,. Using the inverse
mapping at each pixel to predict the inverse mapping at
surrounding pixels, this can be made nearly as inexpensive as
the forward mapping.

In combining intensities from several overlapping images in the
mosaic, a number of different weighting functions can be used. The
simplest one is uniform weighting. A second weights each pixel in
inverse proportion to the squared distance from the center in the
original image, I,,,. This tends to reduce image boundary seams in
the resulting mosaic. A third weights each pixel in proportion to
the amount of compression in the transformation, so that pixels
that are “spread out” by the transformation receive less weight.
These weights are used in a final weighted-average calculation of
intensity.

6 RESULTS

We have applied our “joint solution” mosaic construction
technique to image data sets taken from 16 different eyes. Each
dilated eye was imaged using a TOPCON IMAGENET megapixel
digital fundus camera at the Center for Sight (Albany, New York).
Up to 20 images from each eye were collected in the center and
around the periphery of the retina.

6.1 Example Mosaics

The primary means of evaluating the joint solution is to examine
resulting mosaics both visually and numerically. Example mosaics
from three different eyes are shown in Fig. 4. In some cases, the
anchor image is chosen near the center of the eye, whereas in
others, the anchor is near the periphery. All but one mosaic of Fig. 4
were constructed using the third method for image intensity
combination, which preserves the original intensity structure of the
images, while producing a smooth mosaic except at the image
boundaries. The mosaic of Fig. 4b illustrates use of the second
method for intensity combination, which produces a smoother
combination especially at boundaries between images. Such a
method could be controversial, however, because the intensities

2. This O(N?) complexity is not a major concern in the retinal image
application because typically fewer than 20 images are combined in each
mosaic.
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(c)

(b)

(d)

Fig. 4. Example mosaics formed from image sets taken from three different eyes. Mosaics (a), (c), and (d) use intensity weighting based on the amount of compression.
Mosaic (b), which is formed from the same images and transformations as (a), uses intensity weighting inversely proportional to a pixel’s distance from the original image
center. All mosaics have approximately 1,500 x 1,500 pixels. Transitions between images due to illumination differences are clearly visible in (a), (c), and (d), but the

vasculature appears perfectly aligned.

are changed more substantially than with other methods. Example

mosaics for all datasets are available on our Web site.®

The mosaics may also be evaluated numerically. The measure
used is an extended version of the pairwise centerline error
measure (CEM) discussed at the end of Section 2. Consider a pair
of nonanchor images, I, and I,, connected by an edge in the
pairwise registration graph. First, transform each centerline
pixel p, from I, onto the anchor:

p, = (). 4,)" = 0n0X(p,).

In addition, calculate the Jacobian of the transformation at each
transformed centerline pixel: J,(p}) :%)f(p"). Next, for each
centerline pixel p,, in I,,, transform the pixel onto the anchor:

3. http://www.cs.rpi.edu/~stewart/joint_sol.html.

Pl = (@, 40" = 6moX (D),

and then find the closest transformed centerline pixel p;, from I,,.
Finally, the normalized squared distance between these centerline
pixels is

®5, — ) [3.03)] " (p5, — ). (7)

The normalization is needed to account for compression/expansion
effects of the transformation, especially near the periphery.* Note
that when n = 0, the transformation én,O becomes the identity, as
does the Jacobian, and, therefore, the normalized centerline error
measure reduces to the original pairwise error measure.

4. In practice, the Jacobians are nearly diagonal, so we just take the
diagonal terms, simplifying the computation.
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(e)

Fig. 5. Constraint set graphs and mosaic regions for the five image example illustrating the roles of direct and indirect constraint sets in the joint solution. Image A is the
anchor. The full set of registered pairs is shown in (a) with direct constraints are shown as solid edges, and indirect constraints shown with dashed edges. Graph (b) and
image (d) give the results of using four sets of direct constraints, shown as thick edges in (b). Graph (c) and image (e) give the results of using one set of direct constraints
and three sets of indirect constraints, shown as thick edges in (c). The resulting CEM values, especially between images B and C, are much better in (c). The
misalignment between these images using only direct constraints is clear in the cropped region of the mosaic in (d).

The distance in (7) is the basis for two error measures. First, for
each corresponding pair, we calculate the median error. The
average of these median errors is taken as the “average CEM.”
Second, we combine all errors from all images and take the
median, forming the “combined median CEM.” The median is
used in both cases because the recursive tracing algorithm does not
always trace each vessel in each image.

Over all 16 datasets, the average CEM was never higher than
0.86 pixels; the combined median CEM averaged 0.76 pixels and
was never higher than 0.79. These numbers demonstrate the
stability of the joint solution resulting from the combined use of
direct and indirect constraint sets.

6.2 lllustrating the Roles of Direct and

Indirect Constraints

The significance of indirect constraints in reducing alignment
error in the mosaics was shown with an example in the
introduction. This section shows a more detailed example using
the CEM measures.

The pairwise registration graph and joint solution results for
five images are shown in Fig. 5. The image labeled “A” in the
graph Fig. 5a is the anchor and the joint solution CEMs using all
pairwise registration constraints are shown. Two different reduced
registration graphs are also illustrated. In one, shown in Figs. 5b
and 5d, the image-to-anchor transformations are estimated using
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only direct constraints. The results indicate both numerically and
visually that substantial misregistration occurs. In the second,
shown in Figs. 5¢ and 5e, the transformations are estimated using
only one direct constraint set and three indirect constraint sets. The
results are much improved. In fact, the numerical results from this
second reduced graph are slightly better in terms of the average
CEM than when all constraints are used (Fig. 5a), but the
maximum pairwise CEM is slightly worse. This raises the
interesting theoretical question of how many sets of constraints
are necessary to obtain sufficiently accurate alignment. Since the
issue is not of immediate concern for the retinal mosaicing
application, we defer it to future work.

7 DISCUSSION AND CONCLUSIONS

This paper has presented a substantially improved solution to the
problem of constructing mosaics from a series of images of the
human retina. The main new idea is a linear technique for using
both direct and indirect constraints from matching pairs of retinal
images to jointly estimate the transformations of all images onto
the anchor image coordinate system in which the mosaic is built. In
addition, we summarized a procedure for incrementally construct-
ing a maximally-connected graph of pairwise correspondences.
This algorithm applies the joint solution estimation to initialize
transformations and predict which image pairs can not be
registered, thereby avoiding unnecessary computation.

Experimentally, we have demonstrated the significance of the
new techniques. We showed example mosaics from three of
16 datasets and gave summary numerical results for the others.
These show precisely aligned images, low numerical error, and
almost no variation in this error across all datasets, indicating the
overall stability of the joint solution. Detailed consideration of a
small example demonstrated the importance of indirect con-
straints.

The ability to produce accurate mosaics covering a broad region
of the retina is important in ophthalmic applications. The physician
can now choose any image as the anchor image, see which regions
have not been imaged by looking at the incrementally constructed
mosaic and need not worry about identifying a single image that
will overlap all others. The protocol for imaging the retina is
greatly simplified. The accuracy of the registration implies that
more images can be combined and the resulting mosaic has a
crisper appearance. Such mosaics are especially valuable for
quantitative analysis of the retina and for retinal change detection.
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