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Abstract
Many problems in computer vision require estimation of

both model parameters and boundaries, which limits the
usefulness of standard estimation techniques from statis-
tics. Example problems include surface reconstruction from
range data, estimation of parametric motion models, fitting
circular or elliptic arcs to edgel data, and many others.
This paper introduces a new estimation technique, called the
“Domain Bounding M-Estimator”, which is a generaliza-
tion of ordinary M-estimators combining error measures on
model parameters and boundaries in a joint, robust objec-
tive function. Minimization of the objective function given
a rough initialization yields simultaneous estimates of pa-
rameters and boundaries. The DBM-Estimator has been
applied to estimating line segments, surfaces, and the sym-
metry transformation between two edgel chains. It is un-
affected by outliers and prevents boundary estimates from
crossing even small magnitude discontinuities.

1 Introduction
Estimation techniques from the statistics literature are not

well-suited for many computer vision problems. Standard
definitions of least-squares and maximum likelihood estima-
tors give procedures for estimating the parameters of lines,
circles, ellipses, planes, quadratic surfaces and many other
function models from a data set, and these methods may be
made robust [18, 20] and unbiased [4]. Missing from these
estimation techniques and indeed from the function mod-
els themselves is any notion of the domain or subset of the
data over which the models apply. This is problematic be-
cause function models in computer vision are usually appli-
cable over limited domains, which generally are not known
in advance. For example, a surface in the world has a lim-
ited spatial extent and therefore a surface model estimated
from range data must cover a limited image region; the same
observation holds about the image description of a moving
object. In a very different context, opposing outlines of a
symmetric object should map onto each other using an esti-
mated symmetry transform [5, 7], but parts of the object and
of the nearby background may not be symmetric and there-
fore should not be mapped by the transform. In these and
many other cases, accurate estimation of model or transform
parameters requires accurate estimation of the domain, the
boundaries, or the subset of the data over which the model

Figure 1: Example illustrating the DBM-Estimator in fitting a line
segment to synthetic 2D points near a small step discontinuity: the
upper frame shows a skewed initial fit; the middle frame shows the
DBM-Estimator recovering from the skewed fit and growing the
segment to the left but not across the discontinuity on the right (in
fact it pulls away slightly); the lower frame shows the converged
fit and boundary estimate.

applies. Inclusion of points outside the proper domain can
produce biased parameter estimates, while inclusion of too
few points can lead to inaccurate parameter estimates and re-
dundant models.

This problem, referred to here as the “domain estimation
problem”, has been addressed under many different guises
in many different areas of computer vision. Existing tech-
niques, which work with varying degrees of effectiveness
[12], include many different segmentation methods [1, 9],
snake and balloon models [6, 16], robust estimators [18, 20,
21], and mixture models [14, 22]. The approach introduced
in this paper is quite different and more general than any
of these. It attacks the limitations of standard estimation
techniques directly by incorporating model parameters and
boundaries into a single, robust objective function. The ob-
jective function is a generalization of standard M-estimator
objective functions, and depends on two distance measure-
ments for each point: the usual fitting error or residual dis-
tance and the distance of the point from the current domain.
The latter will be called the “domain distance”.

The new technique, called the Domain Bounding M-
Estimator (“DBM-Estimator”) has several important prop-
erties. These can be contrasted against existing techniques
for the domain estimation problem.� Boundary estimation is entirely driven by the optimiza-



tion process, placing it on par with parameter estima-
tion and making heuristic growth techniques unnec-
essary. The optimization process may cause the sur-
face boundary to grow in some directions and shrink
in others, with growth rates determined by the objec-
tive function’s gradient. For 2D domains, this growth
is similar to that of a balloon model [6] with no need to
simulate an artificial force!� The DBM-Estimator inherits local robustness proper-
ties of standard M-estimators while avoiding their sus-
ceptibility to leverage points, which causes their poor
global robustness (breakdown point).� Domain growth is determined by the cumulative ef-
fect of points in small regions near the domain bound-
ary. This means the objective function does not need
to be tuned to the tail of the error distribution to en-
sure proper domain growth [19], allowing the DBM-
Estimator to distinguish between noise and small scale
discontinuities.

An example illustrating the behavior of the DBM-Estimator
is shown in Fig. 1.

Despite its advantages, the DBM-Estimator does have
limitations. First, since it uses a gradient search technique,
its stopping point is a local minimum, making initializa-
tion important. Usually, however, it is sufficient to avoid
seed regions that substantially overlap a boundary. Second,
though working better than previous techniques, the DBM-
Estimator is not capable of localizing extremely small mag-
nitude discontinuities (e.g. step heights of 2.0 standard devi-
ations).

The DBM-Estimator is illustrated here on three different
problems: line segment fitting for 2D data (Fig. 1); estimat-
ing the parameters and boundaries of a planar surface in a
range image; and estimating the planar projective transform
characterizing the symmetric relation between (parts of) two
edgel chains. Application of the DBM-Estimator to other
problems should be relatively straightforward.

2 M-Estimators
This section briefly reviews standard M-estimators [8] to

set the context for derivation of the DBM-Estimator. Con-
sider N data points xi, model parameters a, which are to be
estimated, and a function r � xi;a � mapping a point and a pa-
rameter vector to a residual. In the simple case of data points
xi � � xi � zi � T and linear regression, r � xi;a � � zi � � 1 � xi � T a.
The scale normalized residual is ui � r � xi;a �	� σi, where σi is
the scale or noise standard deviation which may need to be
estimated. The M-estimate of the parameters is

â � argmin
a

∑
i

ρ � ui � � (1)

where ρ � u � is the “robust loss function.” Among the many
possible forms of ρ ��
�� , only those reaching an asymptotic
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Figure 2: M-estimator ρ function (left) and weight function (right).
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Figure 3: Illustration of a domain over which a surface model
might apply in a range image. Both the interior I � D � and bound-
ary regions Ω � D � are shown.

value for large u are at all effective near discontinuities [21].
One of these, the Tukey biweight [2] (Fig. 2), is adapted be-
low to the DBM-Estimator. Its equation is

ρT � u � �
�

B2

6 � 1 ��� 1 � u2

B2 � 3 �
if � u ��� B �

B2

6 if � u ��� B.
(2)

Most often, equation 1 is solved by iteratively reweighted
least squares (IRLS) [11] using a weight function entirely
determined by ρ: w � u � � ψ � u �	� u � ρ ��� u �	� u. Figure 2 shows
the weight function computed from (2).

3 General Formulation
The DBM-Estimator is formulated by defining the do-

main and domain distance, by defining the objective func-
tion, and by specifying an iterative search technique. These
are considered in turn below.
3.1 The Domain and the Domain Distance

The domain D consists of an interior region I � D � and a
boundary region Ω � D � . These will be image regions for the
surface fitting application (Fig. 3), sections of arc length for
the curve symmetry application, and just an interval of the
x-axis for line segment fitting. The next step is to define the
distance dD � xi � x j � in D between any two points, xi and x j.
This may be a Euclidean distance in the image plane or the
difference in parameter values for an arc length parameteri-
zation of a curve. The domain distance of a point xi is then
defined as

di � min
x j � I � D � d � xi � x j �! (3)

Points in I � D � , “interior points”, have di � 0. Ω � D � is then
defined as points i such that 0 " di " dmax, for some dmax.

Now that both a domain distance and a residual distance
(Section 2) are defined, two different types of outliers must



be defined. Domain outliers are points with large di. Resid-
ual outliers are points with large magnitude ui. Some points
will be both. Neither type should unduly influence the esti-
mated model parameters or boundaries.
3.2 The Objective Function Estimate

The DBM-Estimator objective function is# � a � D � � ∑
i

ρ � ui � di � � (4)

and the DBM-Estimate of model parameters and boundaries
is

� â � D̂ � � argmin
a $D ∑

i

ρ � ui � di � � (5)

where ρ � u � d � is the generalization of the robust loss func-
tion for ordinary M-estimators. (No specific representation
of the domain is assumed here, so the domain is just written
as D, with D̂ as its estimate. Also, the dependence of ui and
di on a and D is left out of these equations to simplify nota-
tion.) The summation is taken over all data points, although,
as will be clear later, evaluating this summation will only re-
quire points in I � D � and Ω � D � . Defining the generalized loss
function ρ � u � d � is clearly the heart of the issue.
3.3 Designing ρ % u & d '

Intuitively, ρ � u � d � should be designed to grow the do-
main to include residual inliers, stop growth or shrink away
from discontinuities, and be unaffected by residual outliers
— properties evident in the example in Fig. 1. Hand spec-
ified data illustrating the requirements for line segment fit-
ting are shown in Fig. 4; the intuitions are the same for the
other applications. Plots (a) and (b) show small scale depth
and orientation discontinuities where the domain should not
expand further to the right despite points in Ω � D � having
fit residuals less than 3σ. (This illustrates a limitation of
region growing techniques which typically include as in-
liers all neighboring points falling within ( 3σ of an extrap-
olated model.) In (c), the structure to the right, well outside
the domain, should neither bias the line segment parame-
ters nor force expansion of the domain. In (d), residual out-
liers falling in Ω � D � should not prevent domain growth from
crossing occluded regions that are at most dmax wide.

Here are four requirements on ρ � u � d � imposed by the re-
quired behavior.

1. For points in I � D � , ρ should behave as a standard M-
estimator. Thus, ρ � u � 0 � � ρT � u � .

2. ρ � u � d � should be constant for d � dmax, independent of
u, preventing domain outliers from influencing model
parameters (Figure 4c). Thus, as d increases from 0 to
dmax, ρ � u � d � should evolve from ρT � u � to a constant
function (for fixed d).1 Points that are initially domain

1This has the added advantage of reducing ∂ρ ) ∂u (and therefore the
IRLS weight function) with increasing d, so that points in Ω * D + have re-
duced influence on estimated fit parameters.

outliers may eventually be drawn into the domain, but
only through its continued expansion.

3. For small u, ρ � u � d � should decrease monotonically as
d decreases, driving the domain toward the point. For
larger u, such as for points on the tail of the residual
distribution, ρ � u � d � should decrease monotonically as
d increases, causing the domain to back away from the
point. The transition value of u between these two ef-
fects, a value denoted as u0 and shown in Fig. 5(a) and
(b), is important since the cumulative influence of the
points in a small section of Ω � I � will determine whether
D expands or shrinks locally. The exact choice of u0 is
based on statistical analysis summarized in Sec. 3.5.

4. Residual outliers within Ω � D � should not, by them-
selves, prevent continued domain growth. This re-
quirement implies that for all d, limu , ∞ ρ � u � d � � ρ∞.

The first three requirements are met by a simple function
(see Figure 5a):

ρ � u � d � �.-/0
/1

ρT � u � if d � 0 �� 1 � f � d �2� ρT � u �43 f � d � ρ∞ if 0 " d " dmax �
ρ∞ � ρT � u0 � if d 5 dmax,

(6)

This joint loss function combines a standard M-estimator
loss function for points in I � D � (the first requirement) with
a constant loss function for points outside Ω � D � (the second
requirement). The function f � d � controls the transition from
one to the other as a point moves through Ω � D � , and is piece-
wise quadratic over 6 0 � dmax 7 with f � 0 � � 0, f � dmax � � 1, and
f � � 0 � � f � � dmax � � 0. All three requirements are clearly met
by ρ � u � d � .

Unfortunately, ρ � u � d � from (6) does not satisfy the fourth
requirement and therefore does not realize the desired be-
havior pictured in Figure 4(d). As ρ � u � d � is currently speci-
fied, residual outliers in Ω � D � , which may be caused by par-
tial occlusions or clustered outliers, can prevent growth of D
or even cause it to shrink. The problem is that the first three
requirements imply ρ � u � d � has different asymptotic values
(for large u) for different d; the fourth implies these asymp-
totes must be the same. The solution is to relax the first re-
quirement, altering ρT � u � to redescend to an asymptote of
ρ∞:

ρM � u �98;:<<=
<<>

B2

6 ? 1 @BA 1 @ u2

B2 C 3 D if E u EGF B HA B2

6 @ ρ∞ � ? 1 @IA 1 @KJ C LNM u M O 2J C L B O 2 C 3 DQP ρ∞ if B RSE u ETF C H
ρ∞ if E u EGU C.

(7)

Substituting ρM � u � for ρT � u � in (6) yields the current
ρ � u � d � .

Plots of ρ � u � d � and the associated weight function to be
used in IRLS parameter estimation are shown in Fig. 5(b)
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Figure 4: Data illustrating the desired behavior of domain growth. The plots show a cross-section of an image, with the x axis as the image
coordinate and the z axis as the depth. In each case, a linear “surface” is shown, with dashed lines above and below showing approximate
3σ uncertainty bands. Ω � D � and I � D � are indicated by segments of the x axis.
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Figure 5: Plots illustrating ρ � u H d � (using dmax 8 3); (a) shows a version meeting the first four requirements; (b) shows the final version; and
(c) shows its associated weight function. Only the positive u axis is shown. In studying these plots, the reader should note that the expected
value of E u E under a Gaussian distribution V 0 W 79. This means a substantial majority of inlier fit residuals will have E u ETR u0.

and (c). It is important to note that the negative weights for
larger u seen in (c) have only a minor effect on estimation,
which in fact is advantageous: near discontinuities they push
the estimated model (very) slightly away from data corre-
sponding to the other structure.

3.4 Minimization
Conceptually, solving (5) is straightforward. The mini-

mization mixes IRLS steps to refine the model parameters
and differential search steps on the domain. The IRLS steps
are exactly as in ordinary M-estimators. The differential
search steps are applied to each section of the discretized
boundary Ω � D � . For example, in line segment fitting, the
boundary segments are the two intervals 6 xl � dmax � xl � and� xr � xr 3 dmax 7 (see Fig. 4), which are determined by xl and
xr. Hence, the differential search steps compute changes to
xl and xr. Considering just xr, the partial derivative of the
objective function is

∂
#

∂xr
� ∑X

i Y xi � � xr $ xr Z dmax [ \
∂ρ � ui � di �

∂d

!� � 1 �T 

Only partial derivatives for points in the boundary segment
are non-zero, and the � � 1 � is just the derivative of di with
respect to xr. This partial derivative is normalized by its
expected value calculated assuming all boundary segment
residuals are normally distributed. The step change in xr,
which may be positive or negative depending on ∂ ]

∂xr
, is then

just proportional to this normalized derivative. Extension
to two-dimensional domains is straight-forward for polyg-
onal representations of the domain boundary. In this case,
the step computed is along the segment normal (see Sec. 5).
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Figure 6: The minimum u0 required for different dmax such that
there is a 0.99 probability of domain growth across a large interval
for 1-d (upper, dotted curve) and 2-d (lower, solid curve) domains.

3.5 Parameter Tuning and Scale
The DBM-Estimator is controlled by four main param-

eters, B, C, u0 and dmax and is influenced by estimates of
scale (noise standard deviation), σ. The first two parame-
ters can be easily fixed and ignored. B, inherited from the
standard Tukey biweight, is set at 4.0 [11], and C � 2B.
The parameters u0 and dmax are interdependent.2 They must
be set together to determine the sensitivity of the DBM-
Estimator to small magnitude discontinuities, while ensur-
ing continued growth across a fit’s correct domain. The rela-
tionship between u0 and dmax can be established numerically
by finding for each dmax the minimum u0 such that there is
a 0.99 probability of (correct) domain growth across a large
(e.g. 100 pixel) interval. These values are shown in Fig. 6
for one-dimensional domains and for two-dimensional do-
mains, where a polygonal boundary segment is assumed
to be 5 pixels wide. The choice of dmax therefore dictates
u0. Rather than using a fixed dmax, however, the DBM-

2Recall that u0 is defined in terms of scale normalized residuals (Sec. 2).



Estimator changes it in a coarse-to-fine manner. Using large
dmax initially prevents the DBM-Estimator from crossing
small magnitude discontinuities, and allows it cross narrow
occluded regions (gaps in the data). Using a small final dmax

allows more precise boundary localization. We use the ini-
tial dmax and the results shown in Fig. 6 to fix u0.

Three comments about scale, σ, are important. First,
robust estimation of scale within the DBM-Estimator is
straightforward using standard techniques [8], although
scale should be fixed once the domain is sufficiently large.
Second, since both noise and modeling error contribute to
the value of σ, fixing σ from outside the DBM-Estimator
controls tolerance of modeling error in domain estimation.
See Sec. 6 for an example of the effect of this. Third, σ,
whether estimated or fixed externally, should not be used
directly in calculating the scale normalized residual ui for
points in Ω � D � . The calculation of ui must instead use pre-
diction interval techniques [19] to factor in the uncertainty
of estimated model parameters. This is especially important
to allow recovery from poor initial fits, as shown in Fig. 1.

3.6 Instantiating the DBM-Estimator
Applying the DBM-Estimator to a specific problem re-

quires four issues to be addressed. (1) A mechanism is
needed to provide an initial domain, and perhaps initial
model parameter estimates. (2) The domain representation
and domain distance metric must be specified. (3) A method
for weighted least-squares model parameter estimation is
needed. (4) A technique for calculating fit residuals and
scale must be provided. All but the second are required for
properly formulated estimation problems [15].

4 Line Segment Estimation
This and the next two sections briefly describe applica-

tion of the DBM-Estimator to the problems of line segment
estimation, surface fitting, and symmetry estimation.

The simple example of line segment fitting has been
used to describe the DBM-Estimator throughout this pa-
per. Experiments are presented here to characterize DBM-
Estimator performance in accurate boundary location given
a small starting region. Results are shown in Fig. 7 for step
and crease discontinuities and for two different starting re-
gions. Step discontinuities are characterized by scale nor-
malized step height h � σ, while crease discontinuities are
characterized by angle α, such that the two lines forming
the discontinuity make an interior angle of π � 2α. Fig. 1
gives an example near a step edge with h � σ � 3  5. The fit
of interest is always the left half of the discontinuity. Start-
ing regions are either far from the discontinuity or close to it.
Fig. 7 shows that the starting region makes a difference for
small magnitude discontinuities: starting far away allows
the fit to stabilize before reaching the discontinuity. Still,
however, discontinuities are localized extremely accurately
by the DBM-Estimator for all but the smallest discontinu-
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Figure 7: The average bias in the position of xr, the right domain
boundary of the line segment, for step (left) and crease (right) dis-
continuities. The left and right halves of the discontinuities were
each 100 pixels wide. Datasets with σ 8 1 W 0 noise and 10% out-
liers were generated from the discontinuity models. In each plot
the dotted line shows the results of starting from near the disconti-
nuity while the solid line shows the results of starting far away.

ities. This performance is far better than that of ordinary ro-
bust estimators [21], which usually fail at step heights below
6σ.

5 Bounded surface estimation
A bounded surface estimated from range data is repre-

sented by a low-order polynomial equation z � x � y � and a two-
dimensional region I � D � . This region is characterized by
an enclosing polygon and one or more non-intersecting in-
terior polygons corresponding to holes in the surface. Ini-
tialization requires only a small initial region, which may be
specified manually or by finding the centers of connected re-
gions having similar robust estimates of local surface nor-
mals. The domain polygon consists of short line segments,
with differential search steps calculated in two parts: (a) the
change in position along the normal to each segment is found
as described in Sec. 3.4, and then (b) the change in each ver-
tex is found by combining motion vectors from adjacent seg-
ments. Segments growing too large are split; those shrinking
too small are merged. Changes in topology are detected and
corrected along the polygons [17]. The overall effect is sim-
ilar to that of a snake or balloon model [6, 16], without any
simulation of artificial forces. Currently there is no smooth-
ing of the DBM-Estimator boundary polygon, so it appears
jagged. Example results are shown in Fig. 8.

6 Symmetry Transform Estimation
Given two pairs of edgel sequences, S �_^ p̃i � i � 1 �  2 	 � n `

and S � �a^ p̃ �i � i � 1 �  2 	 � m ` , the problem is to find a corre-
spondence map C : ^ 1 �  2 2 � n `cb ^ 1 �  2 2 � m ` , a subsequence^ p̃imin � p̃imax ` of S, and a plane projective transform d map-
ping each p̃i in the subsequence onto p̃ �C � i � (with small error).

Symmetry is enforced by requiring d to map p̃ �C � i � onto p̃i as
well, making d at least approximately an involution. An ex-
ample may be seen in Fig. 9 where the left and right halves
of the outline appear symmetric over a large interval.

The vagueness of this problem description, characteris-
tic of many domain estimation problems, may be eliminated
by casting it into the DBM-Estimator formulation using the
steps outlined in Sec. 3.6: (1) An initial, small subsequence



Figure 8: Domains of bounded planar surfaces estimated by the
DBM-Estimator using range data taken from the South Florida
dataset [12]. The top left and right show intermediate stages of
growth on a genus 1 surface, before and after changes in topol-
ogy. The middle shows ground truth segmentation results. The
bottom shows DBM-Estimator surface interiors, each of which is
estimated independently based on automatically extracted seed re-
gions. Observe that currently the results show double boundaries
at discontinuities because adjacent domain estimates are unrelated.
Of special note here, the three center surfaces (15, 21, and 20) on
the foreground object are particularly difficult to estimate and most
published techniques merge them [12, 19].
and associated correspondence map is assumed to be pro-
vided by an algorithm such as described in [5, 7]. (2) The do-
main and domain distance are simply represented by an arc-
length reparametrization, s � i � , of the sequences. This makes
the domain representation exactly as in line segment esti-
mation with the x coordinate being replaced by arc-length.
From this we can explicitly write the problem formulation
as

argmine $ f�g	$ fih
n

∑
i j 1

� ρ �GkGdmlnNo � ln �p � o � kq� σ �sr ft� o � �
3 ρ �GkGdmln �p � o � � ln9o kq� σ �sr ft� o � � �  (8)

Clearly d depends on C and vice-versa, so they are estimated
by alternating matching based on estimated d and refining d
based on new matches, as in [3]. (3) Weighted least-squares
parameter estimation is a straightforward extension of Hart-
ley’s [10] centering and normalization algorithm. (4) As dis-
cussed above, scale in this application represents modeling
error — inexactness of the symmetry — more than noise,
and therefore scale is assumed to be set externally. Example
results illustrating use of the DBM-Estimator in estimatingd and the symmetry boundaries, with emphasis on the role
of scale are shown in Fig. 9.

7 Discussion
The DBM-Estimator has been proposed to address the

general problem of simultaneously and robustly estimating
model parameters and model boundaries. This model may
be a curve, a surface, a transformation, or an image mo-
tion, depending on the problem instance. Formulation of the
DBM-Estimator is intuitive, controlled by only a few param-
eters, and easily adapted to numerous problems. The ma-
jor issue in each problem instance is defining the domain
and the domain boundary representation. Example imple-
mentations and results on three problem instances have been
shown. These illustrate the breadth of possible applications
of the DBM-Estimator, different possible domain boundary
representations, and the ability of the DBM-Estimator to tol-
erate outliers and localize small scale discontinuities. The
polygonal boundary representation for 2D domains has the
added ability to adapt to changes in the domain boundary
topology during minimization of the DBM-Estimator objec-
tive function.

Several issues are still under investigation. First we
have begun experimentation with incorporating the DBM-
Estimator into a mixture model formulation [14, 22].
Promising results, in terms of recognizing and localizing
extremely small-scale boundaries, have been obtained in
the line segment estimation problem. Second, we are work-
ing on improvements to the smoothness of the polygonal
boundary representation for surface fitting. Third, we are
developing a generalization that uses piecewise polynomial
(spline) curves and surfaces instead of a single model for the
entire domain. Together, these improvements will add to
the utility of what we believe is already a widely applicable
new technique.
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