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Abstract

Motivated by the problem of retinal image registration, this paper introduces and analyzes a
new registration algorithm called Dual-Bootstrap Iterative Closest Point (ICP). The approach
is to start from one or more initial, low-order estimates that are only accurate in small image
regions, called bootstrap regions. In each bootstrap region, the algorithm iteratively (a) refines
the transformation estimate using constraints only from within the bootstrap region, (b) expands
the bootstrap region, and (c) tests to see if a higher-order transformation model can be used,
stopping when the region expands to cover the overlap between images. Steps (b) and (c), the
bootstrap steps, are governed by the covariance matrix of the estimated transformation. Esti-
mation refinement (a) uses a novel robust version of the Iterative Closest Point (ICP) algorithm.
In registering retinal image pairs, Dual-Bootstrap ICP is initialized by automatically matching
individual vascular landmarks, and it aligns images based on detected blood vessel centerlines.
The resulting quadratic transformations are accurate to less than a pixel. On tests involving
approximately 6000 image pairs, it successfully registered 99.5% of the pairs containing at least
one common landmark, and 100% of the pairs containing at least one common landmark and at
least 35% image overlap.

Index terms: Registration, iterative closest point, robust estimation, retinal imag-
ing, medical imaging

∗A preliminary version of this paper appeared in [80]



1 Introduction

This paper introduces a new algorithm called Dual-Bootstrap Iterative Closest Point (ICP) and

uses it to solve the retinal image registration problem. The new algorithm is based on a new

approach to registration, which we call the “dual-bootstrap.” We start with the retinal image

registration problem and use this to motivate the algorithm.

1.1 The Retinal Image Registration Problem

Images of the retina are used to diagnose and monitor the progress of a variety of diseases,

including such leading causes of blindness as diabetic retinopathy, age-related macular degenera-

tion, and glaucoma. These images (Figure 1) are usually acquired using a fundus camera looking

through the lens of the eye, and are taken in both the visible spectrum and, using fluorescein and

indocyanine green angiography, in the near infrared [6, 65]. A variety of imaging protocols are

used [24] to produce images showing various parts of the retina. Angiography sequences reveal

the flow of blood through the retina and are therefore used to highlight blockages and weak,

leaking vessels.

Retinal image registration has a variety of applications (Figure 2). Registering a set of images

taken during a single session with a patient can be used to form a single, composite (mosaic)

view of the entire retina [14, 23, 83]. Multimodal registration can reveal the relationship between

events seen on the surface of the retina and the blood flow shown in the angiography. Registering

images taken weeks, months or years apart can be used to reveal changes in the retina at the

level of small regions and individual blood vessels.

Retinal image registration is challenging. The images are projections of a curved surface

taken from a wide range of viewpoints [24] using an uncalibrated camera. The non-vascular

surface of the retina is homogeneous in healthy retinas, and exhibits a variety of pathologies in

unhealthy retinas. Unfortunately (for the purposes of registration), these pathologies can appear

and disappear over time (Figure 3), making them poor choices for longitudinal registration. Only

the vasculature covers the entire retina and is relatively stable over time.

Thus, it appears that a solution to the retinal image registration problem requires an approach

driven by the vascular structure. This can include both the vessels themselves and their branching
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and cross-over points (Figure 3). Choosing to use the vasculature does not make the problem easy,

however. There are many vessels and many of these locally appear similar to each other. The

effects of disease and poor image quality can obscure the vasculature. Moreover, in different stages

of an angiography sequence, different blood vessels can be bright, while others are dark. Finally,

the range of viewpoints dictated by some imaging protocols implies the need to register image

pairs having small amounts of overlap. Together, these observations imply that (1) initialization is

important, (2) minimization will require avoiding local minima caused by misalignments between

vessels, and (3) minimization must also be robust to missing structures. These problems are

common to many registration problems. They are addressed here in a novel way using the

Dual-Bootstrap ICP algorithm.

1.2 Dual-Bootstrap ICP

Consider the images shown in Figure 3. Automatic detection of vascular landmarks (branching

and cross-over points in the vessel) produces just one landmark in common between these two

images. Aligning the images based on the common landmark and then running an iterative

minimization algorithm (a robust version of ICP [7, 17, 87]) results in substantially misaligned

images (Figure 4). The initialization is too poor globally (image-wide) for the minimization to

correctly align the complex vascular structure. Intuitively, this failure is unsatisfying, however,

because the alignment in the small initial region (the white rectangle in Figure 4) is reasonably

accurate. What is needed is a way to expand this locally-accurate initial alignment into a

globally-accurate final alignment. Dual-Bootstrap ICP algorithm does exactly this.

The Dual-Bootstrap ICP algorithm starts from an initial transformation estimate that is only

accurate in a small region, R, (the “bootstrap region”) of the mapped image, and expands it into

a globally-accurate final transformation estimate. This expansion iteratively refines and extends

the transformation. This process, illustrated for the above retina image registration example in

Figure 5, is accomplished by repeating three major steps:

Estimating the transformation: The transformation is estimated only in the bootstrap re-

gion. Dual-Bootstrap ICP uses a robust form of ICP, but other transformation estimation

algorithms could be used, especially in different application domains.

2



Region bootstrapping: Based on the uncertainty in the transformation estimate, the boot-

strap region is expanded. This is governed by the transformation parameter estimate co-

variance matrix. Stable, accurate estimates cause rapid growth, while unstable, inaccurate

estimates cause slow growth.

Model bootstrapping: Rather than using a single, fixed transformation model, different mod-

els are used as the bootstrap region expands, starting from a simple model for the initial

bootstrap region and gradually evolving to a higher-order model as the bootstrap region

grows to cover the entire image overlap region. Model selection techniques [11, 76] are

used to automatically select the transformation model for each bootstrap region. The set

of transformations used in retinal image registration is shown in Table 1.

Thus, the term dual-bootstrap refers to simultaneous growth in the bootstrap region and the

transformation model order. Initialization of the bootstrap region can be accomplished in many

ways, including manually specification of common structures by a clinician. In the retina applica-

tion, where the entire registration procedure is fully-automatic, landmarks are matched based on

invariant signatures, and the initial bootstrap region is formed around the landmarks. The dual-

bootstrap procedure is run on several such initial bootstrap regions. If the procedure converges

to a sufficiently-accurate image-wide transformation for one of these regions, the two images are

considered to be accurately aligned and registration succeeds.

2 Background

2.1 Approaches to Registration

Registration is a fundamental problem in automatic image analysis [10]. A number of useful

surveys of registration within the medical imaging domain exist [31, 41, 47]. Many medical

image registration techniques address the problem of accurate alignment of intra- and inter-

modality images given reasonable starting estimates [31, 45, 82]. Other research in medical image

registration focuses on the deformations necessary to align images, taking cues from physics-based

models [47, 49]. In many applications such as retinal image registration the most important issues
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are initialization, convergence, and robustness to missing and misaligned structures; handling

substantial deformations is less important.

Initialization can be addressed in a variety of ways, including image-wide measurements

[36, 40], multiresolution [5, 27, 66, 67], indexing and initial matching of distinctive features or

sets of features [18, 21, 44, 69, 75], and minimal-subset (of possible correspondences) random-

sampling techniques [28, 34, 64, 78, 79, 88].

The major distinction in minimization methods is between intensity-based and feature-based

approaches. Intensity-based approaches generally optimize an objective function based on com-

parison of intensities or intensity gradients [59], or based on measures such as mutual information

[31, 45, 82]. Feature-based techniques align images based on correspondences between automati-

cally detected features [15]. In the retina application, the stable and prominent vascular structure

should drive the minimization. This is done using a feature-based method here, but other meth-

ods are certainly possible. Of particular interest is the idea of aligning vascular features of one

image with the intensity structure of another [2, 3]. We can think of this as a partial feature-based

approach.

Dual-Bootstrap ICP uses the ICP algorithm, which was invented almost simultaneously in

the early 1990’s by several different research groups [7, 16, 17, 51, 87] and has been used in

many applications since then [25, 42, 51, 56]. ICP is based on point features, where the “points”

may be raw measurements such as (x, y, z) values from range images, intensity points in three-

dimensional medical images [27, 30], and edge elements, corners and interest points [68] that

locally summarize the geometric structure of the images. The idea of ICP is to alternate steps of

(1) closest point matching based on a transformation estimate and (2) transformation estimation

based on the resulting matches until convergence to a local minimum. Clearly, good initialization

is an important precursor to ICP.

2.2 Retinal Image Registration

Retinal image registration algorithms in the literature differ based on the the transformation

models, the image primitives, and the search techniques.

The transformation models applied in retinal image registration include translation [4, 50, 84],
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Euclidean [43, 57], similarity [20, 62], affine [33, 39, 48, 50, 54, 60, 62, 85], bilinear [48, 54]

and quadratic [15, 26, 35, 46, 70]. [15] derives the quadratic transformation model based on a

weak perspective camera model and a quadratic approximation to the retinal surface. Table 1

summarizes the accuracies of several retinal image transformation models, showing that for

1024 × 1024 images and a wide range of overlaps, the quadratic transformation is needed for

accurate alignment. For lower resolutions and a high fraction of image overlap, lower-order

transformations can be used.

As in the general registration problem, transformation parameter estimation techniques for

retinal image registration can be classified into intensity-based [20, 48, 54, 58, 62], and feature-

based [4, 15, 26, 33, 35, 39, 43, 46, 50, 57, 60, 70, 84, 85]. Intensity-based approaches have

used intensity differences on segmented images [48, 54], and cross-correlation[20, 58] and mutual

information measures[62] on the original images. These algorithms have been embedded in non-

gradient, global search techniques such as simulated annealing or genetic algorithms because

of the large number of local minimum in the search space [48, 54]. The resulting techniques

require many function evaluations (up to 10,000) for affine transformations. This problem is

substantially worse for quadratic transformations. Intensity-based approaches can also suffer

from background changes due to pathologies or artifacts.

Feature-based methods usually minimize an objective function of the distances between vas-

cular landmark correspondences. To narrow down the search space to the correct domain of

convergence, [26, 33, 46, 84] initialize the transformation using “matched” landmarks, such as

the optic disk and the fovea in [26, 33, 84], manually specified points [46], and triples of land-

marks assuming the images are initially close [39]. [35, 57, 85] estimate the most plausible

transformation from a pool of possible landmark matches using techniques such as the Hough

transform [57, 85], expectation-maximization [35], and voting [4]. [43, 60] guess several different

initial transforms from seeds or Fourier measures and then refine based on alignment of ves-

sels using non-gradient-based minimization techniques. The form of these constraints is roughly

similar to those in the Dual-Bootstrap ICP without the dual-bootstrap procedure for avoiding

local minima. [50] searches for the corresponding areas based on template matching on edges.

Having the initial transformation, most algorithms iteratively remove the outliers based on a
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distance constraint and refine the transformation using techniques such as least-squares mini-

mization. Our group has recently published a landmark-based retinal registration algorithm that

aligns automatically-detected landmarks using a hierarchical estimation technique [13, 15]. Even

more recently, we have described a real-time algorithm designed to align images taken during

surgery with images forming a spatial map of the retina [69, 70]. This algorithm uses invariant

indexing and alignment of blood vessels for refinement, but does not use dual-bootstrapping. In

all landmark-based algorithms, the major problem is finding and matching a set of consistent

landmarks to sufficiently constrain the transformation needed for accurate registration. This is

particularly a problem for non-linear transformations, low image overlap, poor quality images,

and longitudinal changes.

In summary, while a wide variety of techniques has been proposed for the retinal image

registration problem, none of them yet address all the issues outlined in Section 1.1.

2.3 Multi-Image Registration

Many retinal imaging protocols require acquisition of multiple images [24]. These must be aligned

in a manner that is mutually consistent. Hence, any algorithm that registers pairs of retinal

images (“pairwise registration”) is not a complete retinal image registration system [4, 14, 46, 60].

A second algorithm is needed to ensure mutual consistency of all aligned images [14]. Like many

other multi-image alignment techniques [66, 71], the algorithm in [14] uses constraints generated

from pairwise registration to initialize an adjustment procedure that results in transformations

between all pairs of images. Image pairs that fail pairwise registration may even be aligned

accurately if the final alignment of the images involved is sufficiently well-constrained by other

pairwise registration results. We will exploit this fact to aid in the experimental evaluation of the

Dual-Bootstrap ICP algorithm. The ultimate success of multi-image registration still depends

on pairwise registration, however, and when there are only two images to be aligned, multi-image

registration plays no role.
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2.4 Retinal Vascular Feature Extraction

Many techniques have been proposed in the research literature for vascular feature extraction

[12, 38, 60, 72, 74, 86]. In the implementation of Dual-Bootstrap ICP, we employ an algorithm

that extracts elongated structures using two-sided boundary following [1, 12, 29, 81], which

we have termed “tracing”. This algorithm is fast (less than a second), fully-automatic, and

adapts automatically to the contrast in each image region. The features extracted are trace

point locations along the vessel centerlines, akin to medial axis points. Each centerline (trace)

point is described by a location, tangent direction, and width. Branching and cross-over points

(“landmarks”) of the vessels are extracted as well. Each landmark is described by its image

coordinates and the orientations and widths of the vessels that meet to form it. Other feature

extraction techniques could be used in the Dual-Bootstrap ICP algorithm in place of our own.

Moreover, as illustrated in Figure 5, much of the registration algorithm design is intended to

recover from poor quality features.

3 The Dual-Bootstrap ICP Algorithm

The organization of the algorithm description has a two-fold purpose. The first is to show

how Dual-Bootstrap ICP is used to register retinal images. The second is to present the core

dual-bootstrap technique as a procedure that might be used in a variety of other applications.

Following an introduction to the notation and a procedural outline, Sections 3.3, 3.7, and 3.8 are

specific to the retinal application, while the description of the core procedure in Sections 3.4-3.6

is more general.

3.1 Notation

The following notation will be used:

• Let I1 be the image being mapped (the “moving” image) and let I2 be the fixed image (the

“target” image) that I1 is being mapped onto.

• The centerline trace point and landmark feature sets will be denoted Pi and Li, respectively

for i = 1, 2.
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• Rt will denote the bootstrap region at iteration t of the dual-bootstrap procedure. Boot-

strap regions are defined in the coordinate system of image I1. The initial bootstrap region

is R1.

• M(θ;p) is a transformation function mapping image location (or feature vector) p from the

coordinate system of I1 onto the coordinate system of I2. Here θ is the set of transformation

parameters to be estimated.

• Let M be a sequence of such transformation functions or “models”. The model set may

or may not form a nested hierarchy. In the retina application, M is {similarity, affine,

reduced-quadratic, quadratic} (Table 1).

• Mt will denote the model selected in bootstrap region, Rt, during iteration t. θ̂t is the

estimated vector of parameters instantiating the model Mt.

• Σt is the covariance matrix of the estimated parameter vector θ̂t.

• E(Rt,Mt,θt) is the registration objective function that measures the transformation error

between I1 and I2 in region Rt using model Mt and parameter vector θt.

3.2 Procedure

The following outlines the entire Dual-Bootstrap ICP procedure:

1. Pre-computation: Apply feature extraction to each image, I1 and I2, to produce the fea-

ture sets Pi and Li, i = 1, 2. Match landmarks between L1 and L2 to produce initial

correspondences.

2. For each initial correspondence:

(a) Initialize the model M1 to be the lowest order model, and compute an initial trans-

formation estimate. Establish the initial bootstrap region R1.

(b) t = 1

(c) (Dual-Bootstrap procedure) While the estimate has not converged:
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i. Estimate parameter vector θ̂t by minimizing E(Rt,Mt,θt) using a robust ICP

algorithm. Calculate the covariance matrix Σt of the estimate θ̂t.

ii. Bootstrap the model: Apply a model selection technique to choose the new model

Mt+1. If the model selection technique chooses a different model — that is,

Mt 6= Mt+1 — then θ̂t and Σt must be replaced by the estimate and covariance

computed for Mt+1 during model selection.

iii. Bootstrap the region: Use the covariance matrix, Σt, and the new model Mt+1

to expand the region based on the “transfer error”.

iv. Check for convergence.

v. t = t + 1

(d) If the converged transformation estimate θ̂ is sufficiently accurate, terminate with a

successful registration.

3. When no more initial estimates are available, terminate and indicate that the images can

not be registered.

3.3 Initialization: Invariants and Initial Estimates

A brief description of the invariant signature computation and matching (1) and initial estimation

(2a) steps is as follows. Matches between two landmarks, one in each image, or between pairs of

landmarks in each image are generated by computing and comparing invariants [8, 55]. Invariants

for a single landmark are blood vessel width ratios and blood vessel orientations (Figure 6), giving

a five-component invariant signature vector.1 The invariant signature of a set of two landmarks is

a six-component vector. The line segment drawn between the two landmarks forms an axis, and

the orientation of each of three landmark angles is computed with respect to this axis, giving the

six components.2 The invariant signature vectors for one- and two-landmark sets are computed

separately for each image, I1 and I2, and then matched (each set separately). The closest match

is found for each signature vector. Additional matches are determined when the Mahalanobis

distance between signature vectors is within a 95% confidence chi-squared uncertainty bound.
1These are invariant to translation and scaling, making them quasi-invariant to higher order models.
2These are similarity invariants.
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Each signature match produces a set of one or two landmark correspondences, depending on

whether single landmark or landmark pair invariants were matched. These sets are ordered for

testing by chi-squared confidence levels.

For each set of landmark correspondences chosen (step 2) to initialize the dual-bootstrapping

procedure, parameters of a similarity transformation are estimated (step 2a) from the landmark

locations and the orientations and widths of the vessels that meet to form the landmarks. For

single-landmark correspondences, the initial bootstrap region, R1, is an axis-aligned square cen-

tered on the landmark in I1. The width of the square is α = 10 times the width of the widest

vessel meeting to form the landmark. For pairs of landmark correspondences, R1 is the smallest

axis-aligned rectangle containing the squares formed around both landmarks in I1.

3.4 Estimating the Transformation Parameters

The first step in the dual-bootstrap loop (2c) is estimating the transformation within the boot-

strap region Rt. Since registration is based on blood vessel trace points, the objective function

to be minimized may be written as:

E(Rt,Mt,θt) =
∑

p∈P∩Rt

ρ(d(Mt(θt;p), I2)/σ̂). (1)

Here, d(Mt(θt;p), I2) is the distance between the transformation of p and the closest point

(trace) in I2, ρ(u) is a robust loss function [32, 73], monotonically non-decreasing as a function

of |u|, and σ̂ is the error scale, which is the (robust) standard deviation of the error distances.

3.4.1 Robust ICP

In ICP the objective function is minimized by alternating steps of matching and parameter

estimation. In matching, trace points p ∈ P1 that are also in Rt are mapped into I2 based on

the current transformation. This forms point p′ = Mt(θ̂t;p). The closest image I2 trace point

q ∈ P2 to p′ is found (Figure 7). Digital distance maps are used to accelerate matching [9, 22].

The distance metric is

d(Mt(θt;p),q) = |(Mt(θt;p)− q)T ηq|, (2)
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where ηq is the normal to the trace at q. This gives a “point-to-line” distance, which is appro-

priate for matching points on vessel contours. Each resulting correspondence, (p,a) is placed in

the correspondence set Ct for this iteration of ICP (not the iteration of the dual-bootstrap loop).

The new transformation parameter estimate (for this iteration of ICP) θ̂t is calculated based

on rewriting (1) using the correspondences and the distance metric (2):

E(Ct,θt) =
∑

(p,q)∈Ct

ρ([Mt(θt;p)− q]T ηq)/σ̂). (3)

The equation is minimized using iteratively-reweighted least-squares (IRLS) [37], with weight

function w(u) = ρ′(u)/u. The minimization process alternates weight recalculation using a fixed

parameter estimate with weighted least-squares estimation of the parameters.

The choice of loss functions is motivated by looking at several different loss functions and

their associated weight functions illustrated in Figure 8. The least-squares loss function has a

constant weight, the Cauchy weight function descends and asymptotes at 0, while the Beaton-

Tukey biweight function [37] has a hard limit beyond which the weight is 0. This limit is set to

about 4σ̂ in the statistics literature. This is important for rejecting errors due to mismatches,

and therefore it is the one we choose (other loss functions sharing this hard-limit property could

also be used). In detail, the weight function is

w(u) =


[
1−

(
u
4

)2]2 |u| ≤ 4

0 |u| > 4,

(4)

where u = d(Mt(θt;p),q)/σ̂.

3.4.2 Robust Error Scale Estimation

Estimation of error scale, σ, is done for each set of correspondences, Ct, at the start of reweighted

least-squares. We use a technique called MUSE that automatically adjusts its estimate by de-

termining the fraction of (approximately) correct matches [52, 53]. This is important because

sometimes more than 50% of the feature points in Rt are mismatched. (An example of this occurs

during the registration process shown in Figure 5 when Rt covers about half the overlap between
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images.) Let rj = |d(Mt(θ̂t;pj),qj)| be the absolute error estimate for the jth correspondence

using the current estimate θ̂t of the transformation parameters. Let r1:N , r2:N , . . . , rN :N be a

rearrangement of these values into non-decreasing order. Then for any k, r1:N , . . . , rk:N are the

k smallest errors. A scale estimate may be generated from r1:N , . . . , rk:N as

σ2
k =

∑k
j=1 r2

j:N

C(k, N)
,

where C(k, N) is a computed correction factor. This factor makes σ2
k an unbiased estimate of

the variance of a normal distribution using only the first k out of N errors. The intuition behind

MUSE is seen by considering the effect of outliers on σ2
k. When k is large enough to start

to include outliers (errors from incorrect matches), values of σ2
k start to increase substantially.

When k is small enough to include only inliers, σ2
k is small and approximately constant. Thus,

we can simply evaluate σ2
k for a range of values of k (e.g. 0.35N, 0.40N, . . . 0.95N), and choose

the smallest σ2
k. To avoid values of k that are too small, we take the minimum variance value of

σ2
k, not just the smallest σ2

k. Details are in [52, Chapter 3].

3.4.3 Covariance Matrix

The final step in transformation parameter estimation, after the inner robust ICP loop is finished,

is computing the covariance matrix of the estimated parameters. We approximate this from the

inverse Hessian — the matrix of second partial derivatives — of the objective function evaluated

at the current estimate [61, Ch. 15]. Intuitively, the Hessian measures the steepness of the

minimum; hence, the variance of the parameters is low for steep minima. In equation form, the

covariance matrix is

Σt = H−1(E(Rt,Mt, θ̂t)). (5)

where E() is defined in (1). For a fixed set of correspondences, E() simplifies to the expression

in (3), which is used here. This is exact for quadratic ρ functions, and approximate otherwise.

Finally, there is no need to multiply H−1 by σ̂2, because σ̂2 is already used to normalize the

objective function.
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3.5 Bootstrapping the Model

Small bootstrap regions Rt usually contain insufficient constraints to reliably estimate the pa-

rameters of the quadratic transformation (see Table 1). Moreover, non-linear distortions are

generally small in these regions. For large bootstrap regions the non-linear distortions are signif-

icant, and the quadratic transformation is well-constrained. One possible solution to this would

be to introduce stabilizing multipliers on the non-linear parameters of the quadratic model for

small image regions and use just a single model. This would introduce one or more tuning

constants, however, and would not help with under-constrained linear terms.

A second approach, and the one we adopt, is to use a set of transformations models, each

successively more accurate and involving more parameters, and automatically switch between

models as Rt expands. (See [77] for a similar approach in the context of multi-camera imaging

geometry.) Table 1 shows the models used in retinal image registration, and illustrates the

successive accuracy of each model. Changing the model order must be done carefully, however.

Switching to higher order models too soon causes the estimate to be distorted by noise. Switching

too late causes modeling error to increase, which increases the alignment error. This can cause

misalignments on the boundaries of Rt, sometimes leading registration into the wrong domain

of convergence. To select the correct model for each bootstrap region, statistical model selection

techniques are applied.

Statistical model selection is a well-studied problem [11, 76], and experimental analysis shows

that several techniques have approximately equivalent performance [11]. All techniques choose

the model that optimizes a trade-off between the fitting accuracy of high-order models and the

stability of low-order models. Stability is generally measured in terms of the covariance matrix

of the parameters. (For a fixed data set, covariance matrices of higher-order models generally

have smaller eigenvalues than covariance matrices of lower-order models and therefore should be

viewed as less stable.) The current Dual-Bootstrap ICP model selection criteria is adapted from

[11]. The criteria depends on the following expression:

d

2
log 2π −

∑
i

wir
2
i + log det(Σ), (6)
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where d is the degrees of freedom in the model,
∑

i wir
2
i is the sum of the robustly-weighted

alignment errors (based on the estimate θ̂), and det(Σ) is the determinant of the parameter

estimate covariance matrix. The t subscripts have been dropped in this equation.

Equation 6 is evaluated for the current model Mt and for other candidate models from the

set M. For each other model M , the objective function E(Rt,M,θ) must be minimized to

produce the weighted alignment errors and the covariance matrix. For simplicity, we use the

correspondence set Ct from the minimization of E(Rt,Mt,θt) to reach an approximate minimum

for each M rapidly. Also, for simplicity, we can just evaluate Mt and the next more complex

model in M, especially since region growth is monotonic. Overall, the model that results in the

greatest value of (6) is chosen at Mt+1.

3.6 Bootstrapping the Region

Region expansion should be controlled by the uncertainty in the transformation estimate: un-

certain transformations lead to uncertain mapping of feature points and therefore uncertain

matching. (Errors in matching resulting from errors in the transformation are exactly what the

dual-bootstrap procedure is designed to avoid.) This requires deriving the uncertainty in the fea-

ture point mapping from the covariance of the transformation parameters, and then developing

region expansion equations from this.

The uncertainty in mapping of point locations is computed from the covariance of the trans-

formation parameter estimate using the “transfer error” [34, Ch. 4]. Specifically, let pi be a

location in I1, with coordinates computed with respect to the center of Rt. Let p′i = Mt(θ̂t;pi)

be the mapping of pi onto image I2 based on the current estimate. This mapped point is a ran-

dom variable because of its dependence on the transformation.3 Its covariance matrix, denoted

by Σp′
i
, can be approximated from Σt and the Jacobian of the transformation evaluated at pi:

Σp′
i
=

(
∂M(θ̂t;p)

∂p

(
pi

))
Σt

(
∂M(θ̂t;p)

∂p

(
pi

))T

. (7)

For two-dimensional retinal images this is a 2× 2 positive definite matrix whose terms increase
3For simplicity, we do not treat pi as a random variable here: variability in feature location is much less than

variability in the transformation until the estimation converges.
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with increasing distance from the center of the region.

Several region growth techniques could be developed using the transfer error. For example,

we could define Rt+1 to be the set of pixel locations in I1 for which the trace of the transfer

error covariance matrix is less than a threshold. This would require computing and mapping the

covariance at each pixel. The measure we adopt here is simpler and faster to compute. Since the

bootstrap regions are axis-aligned rectangles, we grow each side of Rt outward independently.

This requires the computation of only four transfer error covariance matrices per iteration t.

In particular, growing any one of the four sides of Rt involves pushing pi, which we now

define to be the center of the side, out along the side’s normal direction, ηi (see Figure 9). In

order to exploit the transfer error covariance, which is defined in the coordinate system of I2,

outward normal vector ηi must be mapped into I2 and rescaled to produce the mapped unit

normal, η′i. Projecting the transfer error covariance on this (outward) direction produces the

scalar η′i
TΣp′

i
η′i. Using this, we define the outward growth of the side in terms of the shift in pi

as:

∆pi = β
(pT

i ηi)

max(1,η′i
TΣp′

i
η′i)

ηi. (8)

This growth is proportional to the current distance (pT
i ηi) of the side pi lies on from the center

of Rt, and the growth is inversely proportional to the transfer error in the normal direction. The

lower bound of 1 in the denominator prevents growth from becoming too fast. The center of

each side of Rt is expanded outward independently using Equation 8, and the new region Rt+1

is the axis-aligned rectangle formed by the resulting four points. Parameter β tunes the growth

rate. A value of β =
√

2− 1 ensures that the area of a two-dimensional region at most doubles

in each iteration.

3.7 Convergence and Termination

There are two levels of convergence and termination. First, the dual-bootstrap procedure for a

single initial estimate (step 2c) ends when region Rt covers the entire apparent overlap region

between images I1 and I2. Several heuristics are used to help identify incorrect alignments early

in the dual-bootstrap procedure, and thereby accelerate the algorithm: region growth that is too
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slow, alignment error (defined below) that is too large, or a condition number of the parameter

estimate covariance matrix that is too low. If any of these occurs the procedure is terminated

and a new initial estimate is tried. Thresholds are set conservatively to avoid eliminating correct

estimates.

The second level is termination of the overall registration procedure. This occurs when (1) the

alignment error of the final transformation estimate θ̂t is sufficiently low and (2) the covariance

matrix of the quadratic transformation is well-conditioned. Of these, the alignment error is by far

the most important. The error, called the “Centerline Error Measure” or CEM, is defined as the

median of the distances d(Mt(θ̂t;p),q) over all correspondences (p,q) in the final transformation

set, Ct. We use the acceptance threshold of 1.5 pixels on the CEM, as established empirically for

a previous algorithm by Can [15].

3.8 Parameters

The entire Dual-Bootstrap ICP algorithm is largely parameter-free. Of course, there are statis-

tical parameters such as the 95% confidence threshold on Chi-square distance measures, and the

4σ parameter in the Beaton-Tukey biweight, but these are not considered adjustable. The only

parameters that could be considered adjustable are

• α — the initial region multiplier (Section 3.3),

• β — the region growth rate parameter (Section 3.6), and

• the CEM threshold (Section 3.7).

The first two were set at 10 and
√

2− 1 early in our studies and have not been changed, except

to do a retrospective sensitivity analysis (see below). The CEM threshold of 1.5 taken from [15]

was never varied.

4 Experimental Analysis

This section presents the results of a large number of experiments using Dual-Bootstrap ICP in

retinal image registration. The presentation illustrates the nearly flawless performance of the
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algorithm and then illustrates the importance of each major component of the dual-bootstrapping

process.

4.1 Data and Analysis

The performance of the algorithm is demonstrated on two groups of image data sets. One

contains images from 18 different healthy eyes, with 15-25 images in each set. These images,

which were taken with a Topcon digital fundus camera, show a wide range of views of each retinal

fundus, and some pairs of images of the same eye have no overlap whatsoever. This dataset was

the basis for experiments reported with our recent, landmark-based algorithm [15]. The second

data set contains images from 40 different eyes with various pathologies, yielding 300 image pairs.

Some of these pairs were taken at the same time, while others were taken with time differences of

months or even years. Some of these images are from a digital camera, while others are scanned

color slides. All images have a resolution of 1024×1024 pixels. Results are presented for the two

data sets separately because the second, “pathology” set is more challenging, but much smaller.

Figures 5 and Figure 10 demonstrate example alignments for images of unhealthy retinas.

Measuring performance requires a means of validation, preferably ground truth. Manually

generated ground truth is extremely difficult for such a large data set, and this is less accurate

than automatic registration anyway. Fortunately, we were able to develop a multi-part alternative

strategy to give pseudo ground-truth set results:

1. For the set of images from any given eye, we jointly align all images, including pairs

that have little or no overlap, using the joint, multi-image algorithm [14] referenced in

Section 2.3. (The current implementation of this algorithm uses Dual-Bootstrap ICP as its

core pairwise registration engine.) This results in quadratic transformations between all

pairs of images, even ones that failed pairwise registration. We were prepared to manually

generate constraints to ensure that all images were included, but this was not necessary. No

image in our data set was left out by this technique! Therefore, failures of Dual-Bootstrap

ICP registration do not bias these pseudo ground-truth results.

2. We manually validated the mosaics resulting from the quadratic transformations. Several

individuals, including one of the authors and a graduate student unfamiliar with the al-
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gorithm, manually validated the mosaics. The image presentation enhanced the vessels so

that misalignments would appear obvious.

3. As further validation we defined a notion of a “questionable registration pair”. This is

a pair of images (1) for which the registration CEM when restricted to one of the four

image quadrants (with the central area of the image excluded) was above 2.0 pixels, or (2)

a significant fraction of the vessel segments (as opposed to individual trace points) were

mismatched. 75 image pairs meeting one of these conditions were called out for further

analysis by a retina specialist who verified the algorithm’s decision in each case.

These pseudo ground-truth results also form the next validation step: developing approxi-

mate upper bounds on the performance of point-based registration. Taking the set of vascular

landmarks and centerline points for each image as given and fixed, we ask the question, “what

is the best possible performance of an registration algorithm using centerline constraints?” Re-

ferring back to the objective function in Equation 1, for any pair of images we can start from

the “correct” transformation and therefore find an excellent approximation to the correct set of

correspondences (again, with the point sets fixed). From there we can determine the covariance

of the transformation estimate. If the condition number of this matrix indicates that the trans-

formation is sufficiently stable, we say that a point-based registration between these image pairs

is possible. Denoting these pairs as Sh and Sp for the healthy and pathology sets respectively, we

can measure the success rate of our algorithm as a percentage of the sizes of these two sets. This

is our first performance bound. Our second, and tighter bound, restricts Sh and Sp by eliminat-

ing image pairs that have no common landmarks. We can discover this by using the “correct”

transformations to find corresponding landmarks. We refer to the reduced sets as S ′h and S ′p.

Success rates on these sets separate the performance of initialization from the performance of

the iterative minimization of the Dual-Bootstrap procedure algorithm and gives an idea of how

well Dual-Bootstrap ICP does given a reasonable starting point. The cardinalities of these sets

are |Sh| = 5, 753, |Sp| = 369, |S ′h| = 5, 611, and |S ′p| = 361.
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4.2 Overall Performance

The first and most important quantitative measure of overall performance is the success rate

— the percentage of image pairs for which a correct (transformation is within 1.5 pixels of the

pseudo ground-truth) transformation estimate is obtained. This is summarized in Table 6 for the

healthy-eye and pathology-eye datasets. These numbers are extremely high, and show virtually

flawless performance of the overall registration algorithm. (By comparison, our previous retinal

image registration algorithm [15] obtained 67.1% performance for the healthy-eye set, Sh.) The

few failures are due to having few common landmarks or a combination of sparse centerline trace

points and low overlap. This is illustrated using a bar chart in Figure 11. To reinforce this,

for image pairs that overlap in at least 35% of the pixels and have at least one correspondence,

there were no failures. This involved over 4000 image pairs. The average CEM for accepted

transformations was 0.64 pixels.

As an aside, the apparently counter-intuitive result that the pathology data set has higher

success rate is explained by the pathology image pairs having higher overlap, on average. The

healthy-eye images were deliberately taken to obtain complete views of the fundus, whereas the

pathology-eye images were taken to capture the diseased region(s).

As a final indication of the overall performance, here is a summary of some additional exper-

imental details:

• Using matching of single landmarks between images resulted in a 96.7% success rate,

whereas matching pairs of landmarks from each image resulted in a 90.4% success rate.

Since the overall performance was 97.0%, the combination of both did improve performance,

although single landmark matching alone was nearly as effective.

• Over the entire dataset, including both healthy and pathology eye images, the median

number of matches tried before the algorithm succeeded was 1 and the average was 5.5.

The large difference between the median and the average is caused by a small number of

image pairs that required an extremely large number of initial estimates before success.

The worst was 746. The execution time required by the algorithm varied considerably

with the number of initial estimates required before success. On a 933MHz Pentium III
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computer running FreeBSD, the median time was 5 seconds.

• In a sensitivity analysis, we studied values of β (Section 3.6) in the range of 0.25 to 8.

There was no change in performance for small β and only 0.4% degradation at the high

end. Similarly, halving α (Section 3.3) to 5 produced no change and doubling α to 20

produced only a 0.4% degradation.

• In preliminary experiments on multimodal registration of red-free images and fluorescein

angiograms, the Dual-Bootstrap ICP has nearly the same performance as the results re-

ported. It fails for extreme cases of retinas where leakage of the dye from the blood vessels

is immediate and completely obscures the vasculature, or for angiograms taken long af-

ter the injection of the dye, when the dye has slowly perfused the entire retina. In both

cases, failure is largely due to a lack of initial landmarks. Figure 2 shows an example of

multimodal registration.

4.3 Evaluation of the Dual-Bootstrap Procedure

Given the nearly flawless performance of our retinal image registration algorithm, the crucial issue

is how much of it is due to each of the three major components of the dual-bootstrap procedure:

region growth, model selection, and robust estimation. We can address this by removing each

component in turn. The results are summarized in Table 3 and discussed as follows.

Region growth: Removing bootstrap region growth means that the initial similarity estimate

was used to generate image-wide correspondences, as in standard ICP, and then the algo-

rithm was run with no bootstrap region growth. The success rates were 89.4% and 82.4%.

The drop is most significant — 16% — in the pathology set.

Model selection: When bootstrap model selection was eliminated, a single model was used

for the entire process of bootstrap region growth and robust ICP refinement. The natural

model to use is the quadratic. The first set of quadratic parameters was estimated from the

correspondences in the initial bootstrap region. Using the quadratic model only led to a low

success rate, as shown in Table 3. On the other hand, when we initialized an intermediate

model — the reduced quadratic — from the initial bootstrap region, allowed the algorithm
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to run to convergence, and then switched to the quadratic transformation, performance

was much better: 94.1% on the healthy-eye set and 94.6% on the pathology-eye set. This

is a heuristic form of the dual-bootstrap procedure.

Robust estimation: At first thought, the dual-bootstrapping process might seem to eliminate

the need for robustness in the actual registration estimation technique. This is not true,

of course. To illustrate, by simply replacing the Beaton-Tukey ρ function with a least-

squares ρ function, the performance became dramatically worse (Table 3). This is because

mismatches are still clearly possible. Finally, further experiments showed that the use of

MUSE scale estimator over a more common estimator such as median absolute deviation

[63] improved the effectiveness of the overall algorithm (97.0% vs. 93.3% on healthy eyes

and 97.8% vs. 88.3% on pathology eyes).

Clearly, these experiments show that all components of Dual-Bootstrap ICP are important, with

importance increasing substantially for the more difficult pathology eye data set.

4.4 Comparison to Other Retinal Image Registration Algorithms

Section 2.2 summarized the literature on retinal image registration and discussed some of the

limitations of current techniques. Some published techniques do report numerical results. Many

of these only report fewer than 10 results, so these are not considered carefully here. More details

are given in [4, 15, 62]. In particular, [4] reports accuracies of 1.35 pixels for 180 video resolution

images, while [62] reports sub-pixel accuracy in registering images centered on the optic disk,

but only with a large trade-off in the number of function evaluations. Only in recent work [15]

are more that 100 image pairs evaluated and performance quantified as a function of the overlap

between images. As seen in Figure 11 and discussed in Section 4.2, the Dual-Bootstrap ICP

substantially outperforms [15].

5 Discussion and Conclusions

We have introduced the Dual-Bootstrap ICP algorithm and successfully applied it to retinal

image registration. The idea behind the algorithm is to start from an initial estimate that is
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only assumed to be accurate over a small region. Using the covariance matrix of the estimated

transformation parameters as its guide, the approach bootstraps both the region over which the

model is applied and the choice of transformation models. A robust version of standard ICP is

applied to re-estimate the actual transformation in each bootstrap region. The implementation

uses an automatic initialization technique based on matching single vascular landmarks from

each image or matching pairs of vascular landmarks from each image.

Experimental evaluation showed nearly flawless performance of the Dual-Bootstrap ICP al-

gorithm on a large set of retinal image pairs. In comparison to current retina image registration

algorithms, it handles lower image overlaps, image changes and poor image quality, all of which

reduce the number of common landmarks between images. Moreover, by effectively exploiting

the vascular structure during the dual-bootstrap procedure it avoids the need for expensive global

search techniques. All of this is accomplished automatically without the need for any significant

tuning parameters.

Although the experimental results reported only apply Dual-Bootstrap ICP to retinal image

registration, the algorithm design, especially the dual-bootstrap procedure, is intended for broad

applicability. We have already begun applying the algorithm to 3D registration of vascular struc-

tures and neural structures using confocal microscopy. The extension to these is straightforward,

and the results are excellent thus far. Extension to other domains is possible as well. The keys to

doing this are developing a method of initialization based on small image regions and developing

a series of transformation models.

The remainder of this discussion concentrates on intuitions about the advantages and appli-

cability of the Dual-Bootstrap ICP algorithm in general:

• In comparison with current indexing-based initialization methods and minimal-subset random-

sampling methods, Dual-Bootstrap ICP has the major advantage requiring fewer initial

correspondences. This is because it starts from an initial low-order transformation that

must only be accurate in small initial regions.

• In comparison with multiresolution methods, Dual-Bootstrap ICP starts from what might

be thought of as a key-hole view on the alignment rather than the bird’s-eye view of

multiresolution. An experimental algorithm using robust ICP in combination with mul-
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tiresolution failed to align some of the more difficult retinal image pairs.

• Instead of matching globally, which could require simultaneous consideration of multiple

matches [19], Dual-Bootstrap ICP uses region and model bootstrapping to resolve matching

ambiguities. We briefly experimented with the use of multiple matches per feature, and

found that the dual-bootstrap procedure made this unnecessary.

• It may be possible to use other techniques besides robust ICP to estimate the transforma-

tion parameters within the bootstrap region. This is especially important when there is no

clear relationship between features in the two images. Any effective technique can be used

as long as a parameter estimate covariance matrix can be computed. At the very worst,

the computation can be done using numerical differentiation.

• Deciding when the dual-bootstrap approach is needed requires analyzing the combination

of modeling error (see Table 1) and transfer error of initial estimates. If this error, image-

wide, is at least half the distance between the structures (e.g. blood vessels) alignment is

based on, then the dual-bootstrap approach is needed. Interestingly, this question can be

reversed to ask if, by using the dual-bootstrap approach, the initial conditions required for

registration can be weakened and therefore more difficult problems addressed.

• Other than the obvious case of no valid initial correspondences, the dual-bootstrap ap-

proach can fail in two ways. The first is when the initial model is too weak. One example

might be use of an initial rigid transformation when significant scaling is present. The

second way it can fail is when the images contain two geometrically-separated clusters of

features, and the initial transformation is estimated only in a single cluster. As the gap be-

tween clusters grows, the transfer error will grow with it, potentially leading to mismatches

when the bootstrap region Rt grows to include a second cluster.

As a final remark, in the context of retinal image registration, the success of the Dual-

Bootstrap ICP algorithm, somewhat counter-intuitively, has thrown the research challenge back

to feature extraction. The algorithm so successfully exploits whatever data are available that

truly the only cause of failure is extremely poor quality image data, leading to an extremely large
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fraction of missed or spurious features. Thus, developing robust, low-contrast feature extraction

is our main avenue to further improvements in retinal image registration.
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(a) (b)

(c)

Figure 1: Images (a) & (b) are red-free images of a patient’s retina taken 3 years apart. Differ-
ences between the images are caused by the progression of non-exudative Age-related Macular
Degeneration (AMD). Image (c) is a fluorescein angiogram image of the same patient taken on
the same date as (b).
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Figure 2: Applications of retinal image registration. The top image pair shows cropped regions
of an aligned fluorescein angiogram (left) and red-free image (right). On the angiogram, an
ophthalmologist has highlighted leakage of the fluorescein dye. The same region is automatically
highlighted on the red-free image, which shows what the ophthalmologist sees when looking
through the lens of the eye at the retina. The bottom panel shows the alignment of two images
of a patient having exudative AMD. The images were taken 2.5 years apart. Shifts in the position
of the vasculature of more than 4 pixels are highlighted with line segments.
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(a) (b)

(c) (d)

Figure 3: Fundus images of an unhealthy eye (nonexudative AMD) together with image features
used in Dual-Bootstrap ICP registration. Panels (a) and (b) show the images, with landmarks
extracted by our retinal image tracing algorithm [12, 29]. The landmarks are branching and cross-
over points of the retinal vasculature. The only landmark that is common to the two images is
circled. Panels (c) and (d) show the centerline points obtained by the tracing algorithm. Many
inconsistencies in the two sets of traces may be observed.
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(a) (b)

Figure 4: The results of iteratively aligning the images shown in Figure 3. Panel (a) shows
the initial alignment based on the single common landmark. Trace points from Figure 3c are
shown in black and trace points from Figure 3d are shown in white. The white square on the
bottom left shows the accurate alignment surrounding the initial correspondence. Panel (b) shows
the alignment result after convergence of the robust ICP alignment process. The alignment is
extremely poor due to the mismatches in the upper region.
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(a) (b)

(c) (d)

(e)

Figure 5: Illustrating the Dual Bootstrap ICP algorithm in retinal image registration using the
images and feature points shown in Figure 3 and the initial alignment shown in Figure 4a. In
each iteration, a robust version of ICP is applied only in the bootstrap region, Rt, indicated by
the white rectangle in each figure. The transformation is only required to be accurate in this
bootstrap region. Also in each iteration, the best transformation model (in this case, similarity,
reduced-quadratic, or quadratic — see Table 1) — is automatically selected and the bootstrap
region is grown. Several increments of this process are shown in the panels. In panels (a)-(c)
Dual-Bootstrap ICP selected a similarity transformation. In panel (d) it selected a reduced-
quadratic. Panel (e) shows the final alignment using a 12-parameter quadratic model.
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Transformation Equation DoF Accuracy

Similarity p′ =
(

θ11 θ12 θ13 0 0 0
θ21 −θ13 θ12 0 0 0

)
X(p− p0) 4 5.05 pixels

Affine p′ =
(

θ11 θ12 θ13 0 0 0
θ21 θ22 θ23 0 0 0

)
X(p− p0) 6 4.58 pixels

Reduced quadratic p′ =
(

θ11 θ12 θ13 θ14 0 θ14

θ21 −θ13 θ12 θ24 0 θ24

)
X(p−p0) 6 2.41 pixels

Quadratic p′ =
(

θ11 θ12 θ13 θ14 θ15 θ16

θ21 θ22 θ23 θ24 θ25 θ26

)
X(p−p0) 12 0.64 pixels

Table 1: The set of transformation models used in retinal image registration. To clarify notation
in the equations, p = (x, y)T is an image location in I1, p0 = (x0, y0)T is the center of the
bootstrap region in image I1, X(p−p0) = (1, x−x0, y−y0, (x−x0)2, (x−x0)(y−y0), (y−y0)2)T

is the vector of monomial terms of the quadratic basis, and p′ is the transformed location in the
coordinate system of I2. The centering is required in the reduced quadratic model, but is used
in practice in all models for numerical reasons. In addition to the formulations, the table also
shows the degrees of freedom (DoF) in each model and the average alignment error on 1024×1024
images.
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Figure 6: A landmark is characterized by a center location c, the orientations of the three blood
vessels that meet to form it and the widths wj of the blood vessel. Differences in orientations
and the ratios of the blood vessel widths are invariant to rotation, translation and scaling of the
image. The orientations themselves are invariant to translation and scaling.
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Figure 7: A schematic illustrating trace point matching and the distance metric. Trace point
p from I1 is mapped into I2 based on the current transformation estimate (point p′), and the
closest trace q in I2 is found. (The small arrows represent the trace directions.) The error
distance is the distance from p′ to the line tangent to the trace through q (the dotted line).
Letting ηq be the normal to the line, the distance is |(p′ − q)T ηq|.
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Figure 8: Plots of (a) the robust loss function ρ(u) and (b) weight function w(u) = ρ′(u)/u
for the Beaton-Tukey biweight loss function, the Cauchy loss function and the quadratic loss
function, which equates to least-squares estimation. The Beaton-Tukey is chosen because it
most aggressively rejects outliers, providing no weight to matches with normalized distances
greater than about 4 standard deviations.
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Figure 9: The bootstrap region, Rt, is expanded by moving out perpendicular to each side in
image I1. The region and its mapping (never explicitly computed) onto I2 are shaded. Point pi

is in the center of one side of Rt and ηi is the outward normal to Rt at pi. The transfer error of
mapping pi onto I2 helps determine the growth of the bootstrap region.
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(a) (b)

(c) (d)

Figure 10: Dual Bootstrap ICP retinal image registration results on a pair of images taken 3.5
years apart. When the image shown in (b) was taken, the patient had a branch vein occlusion.
Substantial changes in the non-vascular regions appear. Panel (c) shows the alignment of the two
images based on the initial bootstrap region. Extracted blood vessel centerline points from the
two different images are shown in black and in white. The initial bootstrap region is shown as a
white box. Clearly the alignment is quite poor image-wide. Panel (d) shows the final alignment
estimated by the Dual-Bootstrap ICP algorithm starting from this initial estimate.
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all pairs one landmark pairs
healthy — Sh (%) 97.0 99.5
pathology — Sp (%) 97.8 100

Table 2: Overall success rate of the Dual-Bootstrap ICP retinal image registration algorithm
on healthy-eye and pathological-eye images. The first column, labeled “all pairs”, is for all
“correct” image pairs — the sets Sh and Sp. The second column, labeled “one landmark”, is for
all “correct” image pairs having at least one common landmark — the sets S ′h and S ′p.
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Figure 11: Plotting the percentage of successful retinal image registrations as a function of overlap
between images. The plots include all image pairs in healthy-eye data set Sh, not just those for
which a stable transformation is available. The percentage for the Dual-Bootstrap ICP based
algorithm, the percentage for our earlier landmark-based algorithm [15], and the percentage of
stable transformations are all shown for each interval. When the height for an algorithm equals
that of the height of “stable”, 100% success was obtained by the algorithm. Plotting the results
this way shows the overall difficulty in obtaining enough information to register at extremely
low overlaps. Even here, however, the success rate of the Dual-Bootstrap ICP based algorithm
nearly matches the best possible for a fixed set of trace points.
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No region growth No model selection No robustness
Healthy Sh (%) 89.4 84.7 39.0
Pathology Sp (%) 82.4 80.5 12.5

Table 3: Success rates of retinal image registration when each of the three main component of
the Dual-Bootstrapping ICP algorithm was removed separately: region growth, model selection,
and robust estimation. These are significantly lower than the 97.0% and 97.8% numbers for the
overall algorithm.
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