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Abstract

A new methodfor tracking contouss of moving objects
in clutter is presented.For a givenobject,a modelof its
contouss is learnedfrom training contouss in the form of
a subsetof curve space Compleity is addedto the con-
tour model by analyzingrigid and non-rigid transforma-
tions of contouss sepaately In the course of tracking, a
verylarge numberof potentialcurvesaretypically observed
dueto the presencef extraneousedgesin theform of clut-
ter; the learnedmodelguidesthe algorithmin picking out
the correctone Thealgorithmis posedas a solutionto a
minimizationproblem;theoretical resultson howto achieve
the global minimumto within a certain resolution,and the
compleity of this opefation, are presented.Experimental
resultsapplyingthe proposedalgorithmto the tracking of a
flexing finger andto a corversingindividual’s lips are also
presented.

1 Intr oduction

1.1 Review of Existing Approaches

The goalin contourtrackingis to follow the silhouette
of anobjectasit movesthrougha video-stream.To do so,
the deformabletemplateapproach{6] minimizes,for each
frame,anenepgy functionwhichis specificto the geometry
of thetracked object. Elasticsnales[5], by contrastmini-
mize a moregeneralenegy function,which hastermsrep-
resentingelasticandtensileenepgy to ensurethatthe snale
is smooth,and an image-dependerterm that pushesthe
snale towardsthe featureof interest. The Kalmantracker
[1] requiresa learnedlinear stochasticdynamicalmodel
which describeghe evolution of the contourto betracked.
Assumingthatthe obsenationof the contourhasbeencor
rupted by Gaussiamoise, the conditional density of the
contourgivenall pastobsenationsmay be found,andthen
usedto estimatethe contour position. The condensation

tracker[2] alsoassumeadynamicalmodeldescribingcon-
tour motion is known and that impreciseobsenationsare
made.However, both the dynamicalsystemandthe obser
vation processmay be completelygeneraland the condi-
tional densitymay be propagatedorwardin time usingthe
numericaltechniqueknown asthe “condensation’method.
This density may then be usedfor estimatingthe current
contour

1.2 The Problem

In eithertracking an objectthrougha video-streamor
localizingit within a singleimage,the approachakenwill
beto focusentirelyontheobjectscontour or outline. Thus,
theproblemof trackingor localizingreducego oneof find-
ing the “correct” curve in theimage,i.e. the curve which
corresponddo the objectof interest. Supposet is possi-
ble to generatewo setsof curves. Oneset, E, represents
all of the curvesthatcanbe generatedrom the connection
of edge-pointsn the image;a descriptionof how to pro-
ducesucha setfollows in section1.3. The otherset,C,
representsll of the curvesthatcorrespondo the particular
geometryof the objectbeingtracked or localized;that s,
this setC containsall of theinformationaboutthe shapeof
the objects silhouette.A discussiorof this setis provided
at the end of section1.3. Giventhesetwo sets,a sensible
problemto solveis

min _||& - &|
eck e

where|| - || is the L, norm. The ideais straightforvard:

the minimization over the two argumentsensureghat the

“obsened curve” & chosenfrom all of the possiblecurves
in the image bestmatchesthe model of the objectbeing

locatedor tracked,asembodiedn thesetC'. Thetrackedor

localizedobjectis takento beé*, the minimizing argument.
An earlier attempt,on the part of the authors,to solve a

similar problemis containedn [4]; theapproacipresented
in the following sectionshowever, is much more flexible

androbust.



1.3 The SetsE and ¢

Focusfirst on tracking;in this case the setE, of curves
constructedrom edge-pointsn the image,is generateas
follows. At N equallyspacegointsalongthedetectedon-
tourof the previousframe,edge-searctakesplacein circu-
lar regions(in the imageof the currentframe). In eachof
theseregions,a numberof edge-pointaredetecteddenote
the setof edge-pointsletectedn thent” regionby E,,. An
elemen€ € E maybe constructedasfollows:

¢ take oneedge-point,, € E, from eachregionn =
1,...,N;

¢ smoothlyinterpolatethe setof edge-pointe,...,en
intoacurveé.

(The method of interpolationwill not concernus here.)
Thus, the set £ is in one-to-onecorrespondencwith the
setE = F; x --- x En. Supposéhereare M edge-points
detectedbersite,i.e. |E,| = M Vn (in reality, of course,
| En, | # |Eny|); thenthe sizeof the setof obseredcurves
is|E| = |E| = MN

In the caseof objectlocalization,the sameprinciplemay
be appliedfor finding obsened curves,only now thereare
nonaturalcandidate$or searchregions,asonecannotiniti-
atesearchhasednlocalizationin thepreviousframe(since
thereis no previousframe). Instead let the setof all edge-
pointsin theimagebe denotedY'; thentake E,, = Y Vn,
andE and E areconstructedrom the { E,, }N_, asbefore.
Thatis, an “obsened curve” may be generatedy select-
ing a subsetN out of ary of the edge-pointsn the im-
age,in a particularorder, and then interpolatingbetween
them. (For simplicity, repeatecpointsareallowed.) Again,
|E| = |E| = M, but M = | Y| in this caseis muchlarger
thanM is for tracking.

The setC is generatedrom training curvesbeforethe
algorithmis run. It is assumedhatthis setof learneccurves
is afinite dimensionamanifold(asit will bein all caseghat
will bepracticallyencounteredhasdimensions, andmay
be specifiedparametricallyas

C ={éu):ueclU}

where U is someknown, o-dimensional,real, compact,
corvex set(for example,U = [0,1]7), andé(-) is a func-
tion which mapsthe pointsin U to pointsin curve space.
Someof the parametersnay represenfamiliar transforma-
tions; for example,u1,. .. ,ug could represent subsetof
the affine transformationsin fact, givena particulargroup
of transformationsa usefullearningschemewould involve
finding an invariantto this group for eachof the training
cunves,andlearningon theseinvariants;then,the group of
transformationganbe addedn assuggestedbove. In this

casejearningis only usedto understandhe non-afine de-
formations,for which thereis no guidingtheoreticalstruc-
ture. For the moment, no particular learning methodis
outlined; instead,it is simply assumedhat C' asspecified
aboveis known.

1.4 Recastingthe Problem

Using the parametricform for € allows the problemto
bere-written

min [|€ — &(u)|
écE,uelU

However, approximatingthe squareof the L, norm by its
Riemannsumgives

L
le—al = / 1e(s) — &(s)|2ds

N
L
~ = Z llen — call®
Nn:l

wheree,, = é(sp),cn = &(sn), ands, = L("—__ll) Note
that e1,...,en is simply the set of edge-points,culled
from the setsEy,. .., En, whichwereinterpolatedo give
€, samplingé gives back the original points. Denoting
e=(e1,...,en) € R2N andsimilarly for ¢, thenthe mini-

mizationproblemmaybe approximatedvell by

i le = c(u)l
if IV is sufficiently large. Note thatthe normin the above
is the now the normalEuclideannormin 2V, E = E; x
.-+ x Ey asbefore,ande(-) : 7 — R2V.

Therecastproblemis still notobviously amenabléo so-
lution, asE is still discreteandvery large,while U is con-
tinuous. Below, analgorithmwill be proposedor solving
for the global optimum. In particular if d* is the value of
the global minimum, thenthe algorithmwill be shawvn to
give avalueof at mostd* + Ad, for a specifiedAd. Fur-
ther, compleity boundson the algorithm,in termsof M,
N, and Ad will be established.The essencef the algo-
rithm is containedn thefollowing theorem.

2 A Theorem on Global Optimization

Beforestatingthetheoremiit will be necessaryo make
two definitions.

Definition: V is said to be an e-cover of the compact
setU if Yu € U, v € V suchthat |jv — u|| < ¢,
and ¢ is the smallestsuch value. Alternatively, e =
maxyey [mingey [|[v — ul|]. (Note that the maximumis
well-definedsincel is compact.)



Definition: Let H(u) = 22, sothat H(u) € R2Vx7,
Let A; (u) be the largesteigervalue of the ¢ x ¢ matrix
HT(u)H(u). Thenfor ary Y C U, define A(Y) =
[max,ey Ar (u)]'/2.

We are now ready to state the theorem which will
allow us to attack the tracking / localization problem,
mineep 4ev || — c(u)||. Theimport of the theoremwill
bediscussedfterits formal statement.

Theorem: Let V be ary e-cover of U. Further let d* =
minge g uev || — c(u)|| andletd! = mingey |lef — e(u)]|,
wheree! = argminec g (mingyey |le — c(@)|]). If Ad =
dt —d*, then Y
0< Ad < SAEUE
d*

This theorem presentsa problem whose solution is
amenable,and comparesthe objective function value it
givescomparedo the optimal, d*. In particular the prob-
lem min.c g 4ev |le — ¢(v)|| canbe solved, albeit ineffi-
ciently, by exhaustve searchthroughthetwo discretesetsk
andV . If thee-minimizingarguments labellede!, thenthe
quantityd’ = min,cy ||et — c(u)|| is of interest;the fact
thatthe minimizing » is never solved for doesnot matter
sinceour contourestimateis basedon ef ratherthanc(u')
(seesectionl.2). Thetheorengivesanupperboundonhow
far away df canbe from d*; this bounddependscritically
oneg, aparametewhichindicateshow finely V sampled/.

+ 2A(0)e.

3 Proof of the Theorem

Begin by consideringonly two sampledbsenedcurves,
e1 andes. Make thefollowing definitions:fori = 1,2, let

d; = |le; — c(us)||
d; = |le; — c(@;)||

o u; = argmingcy |le; — c(u)]l,
e U; = argmin,cy ||€z' - C(U)”a

o @; = argmingey |lu; — ||, di = |le; — (@)

Then:

d3 — di = |le2 — c(u2)||* — [lex — e(w)|]?
< llez — c(@2)|” + lle(@z) — c(u2)|®
= ller = e(w)|?
< llez — c(@2)|” + lle(@z) — c(u2)|®
= ller = (@)l + lle(dr) — e(u)|?
= d — d} + lle(in) — c(w)|]* + |le(dia) — c(uz) ||
wherethe secondand third inequalitiesare both applica-
tionsof thetriangleinequality Now:

1. d; > dy by definition,so—d2 < —d2
2. Expandingd? = ||es — c(@2)||? gives

d3 = lles — [e(u2) + H(t)(d2 — u2)]|®

whereH(u) = £¢ andii; € U. This is the multi-
variablemeanvaluetheoremywhichis valid dueto the
corvexity of U [3]. Thus,
d3 = |lez — c(un)||” + || H (ii2) (B2 — u2)]|®
+ 2(ea — c(uz))" H(ii2) (2 — up)

@) llez = c(us)|* = & < d3

(b) [|H (ti2) (a2 —u2)||* = (2 —u2)" H” (ii2) H (tis)
(ia — ug). SinceV is an e-cover of U, v
suchthat [[uz — v|| < e. But by definition
fis = argmin,cy ||ue —v||; thus,||és —uz|| < €.
Butthen

(ﬁQ—UQ)THT(ﬁQ)H(ﬁQ)(ﬁ2—UQ) S )\1 (ﬁ2)62

< (glea[p]c A1 (u)) e? = A%(U)e?
where; () andA(-) aredefinedasbefore.
(c) Finally,

(e2 — c(ug))" H (t2) (2 — u2)
< |(e2 — c(uz))" H (i) (2 — us)|
< llez — c(uz)||||H (ti2) (G2 — us)]|

wherethe latterinequalityis dueto the Cauchy-
Scwartzinequality But |les — c(u2)|| = d2 and
fromthepreviousargument| H (i2) (42 —u2)|| <
A(U)E ThUS,(62 — C(UQ))TH('&Q)('&Q — U2) S
dQA(U)E

3. Usingthemeanvaluetheoremonceagain,
lle(@s) — e(wa)ll* = lle(us) + H (i) (% — ;) — c(us)||?
= || H (#:) (s — us)||?
< A2(U)e?

Thus,
B - < B+ AU +2do A(U)e — d2 + A%(U)e?
+ A2 =d2 — & + 34%(U)e? + 2 A(U)e
Theaboveinequalityis valid for ary e; andes. Now, con-
siderin particulare; = e* = argmin.cg[min,ey |le —

c(u)]]] andes = et = argmineep[minyev [le — c(v)[].
Thenby definition,ds; < dy, sothat

d? — d*? <342(U)e + 2dTA(U)e



Experiment| N | D | VideoRate | Resolution| RunningSequence| Accurag
Finger 80 | 20 30Hz 320by 240 | 202frames=6.7s 100%
Lips 80 | 20 13Hz 320by 240 | 130frames=10.0s 94 %

Table 1. Summary of the experiments.

3D L 2 AW)e
1+ 4%

342(U)e? + 2dTAU)e
d* +dt B

d'—d* <
However, 1/(1 + &) < 1 sinced* > 0, sothat

< 3A2(U)e?

342(U)e?
Ad< = 2AT)E

+24(U)e < = © 124(U) ®

4 Complexity and Implementation

The compleity of the optimizationprocedurds asfol-
lows. With no modification,the problem

lle = c()

min
ecE,veV

hascompleity O(MN|V|) since|E| = M. However, if
theproblemis solvedas

min [min |le — c(v)||]

veEV | e€FE

andit is notedthat

N
. 2 . 2
min ||e — ¢V = min €n — CplV
minle —cw)||" =, min n§:1ll n—cn ()|

N
=3 min flen — en(v)]”
n=1

thenthecompleity is reducedo O (M N|V|) (sincethelat-

ter stephasa compleity of O(M N)). Further usingare-

sultfrom computationajeometryit canbeshavn thateach
minimization of the form min,, cg, |le, — ¢n(v)|| canbe
performedwith O(log M) compleity, leadingto anoverall

compleity of O(N|V|log M). (Note: in orderto gainthis

log factor it is necessaryo incur O(M log M) in overhead
to calculatethe relevant Voronoi diagram;however, this is

negligible in the schemeof things.) It is usefulto corvert
the compleity O(N|V|log M) into an expressionwhich

dependson M, N, and Ad. Usea dimensionalargument.
Let V' be ane-covering of U; thenusing somethingakin

to sphere-packingi is clearthatvol(U) ~ |V|e?, where
o = dim(U) = dim(C). Thatis, |V| « £7°. Now, as-
sumingthat Ad is fairly small, thenit canbe shavn that
e is fairly small, so that the upperboundon Ad from the

optimizationtheoremis proportionalto  (thatis, theterm

in €2 dropsout). In this case the algorithmhascomplexity

O(NAd 7 log M).

5. Resultsand Conclusions

Two setsof resultsare presentedo illustrate the effec-
tivenessof the proposedtracker: a flexing finger and a
spealer’s lips. A summaryis givenin Table 1. In both
cases{ waslearnedn thefollowing manner:

¢ Eachtrainingcurve,representedsthe2D coeficients
in a pair of D** order Legendrepolynomial expan-
sions(oneeachfor z andy), wastransformednto its
euclidean-similaritynvariant,representeth the same
basis.

¢ A onedimensionamanifold waslearnedby smoothly
interpolatingthroughall of theinvariants.This degree
of freedomis capturedn thevariableu; .

¢ 4 extra dimensionswere then added, corresponding
to the group of euclideansimilarity transformations:
translationin both x- andy-directions,rotations,and
scaling. Thesedegreesof freedomarerepresentedy
Uz, U3, Ug, Us.

e Thus, both ¢ andC arefive-dimensionamanifolds.
U is choserto be[0, 1]® for corvenience.

The edge-mapn the caseof thefingerwasgeneratedrom

the gray-scaleintensity; clutter is in the form of both the

backgroundwriting (much of which is small, and there-
fore leadsto mary extraneousedges)aswell asthe self-

clutter of the doubledover finger A sequencef tracked

framesis shavn in Figure 1; in this instance the tracker

got all 202 tracked frames close to correct. Note that
motion consistsof a combinationof non-rigid deforma-
tions (flexing) as well asrigid motions (translation);the

trackeris successfulvith both. In the caseof the spealer’'s

lips, the edge-mapwas generatedrom the greenportion

of the RGB image,which hasslightly bettercontrastthan
the intensity; in addition, lipstick was usedto help high-

light contrast. Clutter is clearly visible in the edge-map
shaowvn in Figure 2, dueto the detectionof mary extrane-
ous edges,as well asthe fact that over the searchrange
the lips interferewith eachother A sequencef tracked

framesis shawvn in Figure 2, and the tracker got 94% of

the tracked framescorrect; however, equallyimportantas
this high successrate is the ability to recover from the

occasionalerror, as shavn in Figure 3. Full video se-

guencesof both tracking experimentscan be viewed at

http://himmel.hrl.harard.edi/daniel/researckhtm.
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Figure 1. Tracking a flexing and translating fing er.

_ A

frame80

Arseupe-J1e8 a3rym

frame201

frame154

framel7 framel8

frame75

edge-magor frame75 frame130

Figure 2. Tracking a speaker’s lips.
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Figure 3. Recovering from mistakes.

In thelight of thesesuccessfuéxperimentakesultsit is
worth noting someof the advantageghatare presentedy
this algorithmover othercontourtrackingapproachesAs
opposedo the deformabletemplateapproachthereis no
needfor hand-constructechodelsof the object's geometry;
ratherthis is learned Whereaslasticsnalesuseno special
informationaboutthe objectunderstudy thelearnedinfor-
mationusedby the subsetracker allows for moreaccurate
tracking.Furthermorethesubsetrackeris computationally
lessburdensomehanthesetwo typesof trackers. The sub-
settracker dealswell with clutter, whichis amainfailing of
theKalmantracker. All of theadwantageseferredto above
are matchedby thoseof the condensatiortracker. How-
ever, the condensatiottracker relieson learneddynamical
information, as opposedo the more basicshapeinforma-
tion learnedhere. Thereare mary situationsin which the
availabletraining curves,which areusedfor learningprior
to the running the algorithm, may be sufficient for learn-
ing thespacdn which object"li ves, but areinsufficient for
learningthe dynamicsof the object.

Directionsfor future researchinclude the development
of an efficient multistagealgorithm for maximizing over
thesetV C U; suchanalgorithmwould have a tree-like,
or coarse-to-finestructure,which allows subsetsf U, in
which the minimand cannotpossibly reside,to be elimi-
natedasthealgorithmprogressedn addition,analgorithm
for learninga multidimensionalmanifold would be of ben-

efit. In the currentexperimentspne-dimensionainanifolds
was learnedin invariantspace;however, it is quite likely

that the true manifoldswere of higherdimension. (In this

scenario the one-dimensionammanifold is simply a subset
of the higherdimensionalmanifold.) Successn this area
would alsoallow for more efficient implementatiorof the

algorithm. Finally, the algorithm may be extendedto the

task of objectlocalization,in which an objectis to be lo-

catedwithin a singleimage. Edge-searcleanno longerbe

initiated at the previous frame’s contourestimate;thus, in

principle any edge-pointin the image may be potentially
partof therelevantcurve. The ability to searchthroughthe
resultinghugespaceof obsenedcurvesreliesonthelog M

termin the compleity, asdiscussedn section4.
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