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Abstract

A new methodfor tracking contours of moving objects
in clutter is presented.For a givenobject,a modelof its
contours is learnedfrom training contours in the form of
a subsetof curvespace. Complexity is addedto the con-
tour modelby analyzingrigid and non-rigid transforma-
tions of contours separately. In the courseof tracking, a
verylargenumberof potentialcurvesaretypicallyobserved
dueto thepresenceof extraneousedgesin theform of clut-
ter; the learnedmodelguidesthe algorithm in picking out
the correct one. Thealgorithm is posedas a solutionto a
minimizationproblem;theoreticalresultsonhowto achieve
theglobal minimumto within a certain resolution,and the
complexity of this operation, are presented.Experimental
resultsapplyingtheproposedalgorithmto thetrackingof a
flexing finger andto a conversingindividual’s lips are also
presented.

1 Intr oduction

1.1 Review of Existing Approaches

The goal in contourtrackingis to follow the silhouette
of anobjectasit movesthrougha video-stream.To do so,
the deformabletemplateapproach[6] minimizes,for each
frame,anenergy functionwhich is specificto thegeometry
of thetrackedobject. Elasticsnakes[5], by contrast,mini-
mizea moregeneralenergy function,which hastermsrep-
resentingelasticandtensileenergy to ensurethatthesnake
is smooth,and an image-dependentterm that pushesthe
snake towardsthe featureof interest. The Kalmantracker
[1] requiresa learnedlinear stochasticdynamicalmodel
which describestheevolution of thecontourto betracked.
Assumingthat theobservationof thecontourhasbeencor-
rupted by Gaussiannoise, the conditional density of the
contourgivenall pastobservationsmaybefound,andthen
usedto estimatethe contourposition. The condensation

tracker[2] alsoassumesadynamicalmodeldescribingcon-
tour motion is known and that impreciseobservationsare
made.However, both thedynamicalsystemandtheobser-
vation processmay be completelygeneraland the condi-
tional densitymaybepropagatedforwardin time usingthe
numericaltechniqueknown asthe“condensation”method.
This densitymay then be usedfor estimatingthe current
contour.

1.2 The Problem

In either trackingan object througha video-stream,or
localizing it within a singleimage,theapproachtakenwill
beto focusentirelyontheobject’scontour, oroutline.Thus,
theproblemof trackingor localizingreducesto oneof find-
ing the “correct” curve in the image,i.e. the curve which
correspondsto the objectof interest. Supposeit is possi-
ble to generatetwo setsof curves. Oneset, �� , represents
all of thecurvesthatcanbegeneratedfrom theconnection
of edge-pointsin the image;a descriptionof how to pro-
ducesucha set follows in section1.3. The other set, �� ,
representsall of thecurvesthatcorrespondto theparticular
geometryof the objectbeing tracked or localized; that is,
thisset �� containsall of theinformationabouttheshapeof
theobject’s silhouette.A discussionof this setis provided
at the endof section1.3. Given thesetwo sets,a sensible
problemto solve is ��� �	
 � 	��
 	� � 	��� ���� �� �
where ����� is the ��� norm. The idea is straightforward:
the minimizationover the two argumentsensuresthat the
“observedcurve” �� chosenfrom all of the possiblecurves
in the imagebestmatchesthe model of the object being
locatedor tracked,asembodiedin theset �� . Thetrackedor
localizedobjectis takento be �� � , theminimizingargument.
An earlier attempt,on the part of the authors,to solve a
similar problemis containedin [4]; theapproachpresented
in the following sections,however, is muchmoreflexible
androbust.



1.3 The Sets �� and � 
Focusfirst on tracking;in this case,theset �� , of curves

constructedfrom edge-pointsin the image,is generatedas
follows.At ! equallyspacedpointsalongthedetectedcon-
tourof thepreviousframe,edge-searchtakesplacein circu-
lar regions(in the imageof the current frame). In eachof
theseregions,a numberof edge-pointsaredetected;denote
thesetof edge-pointsdetectedin the "$# % regionby

�'&
. An

element�(*) �� maybeconstructedasfollows:+ take oneedge-point( & ) ��& from eachregion "-,. / 0 0 0 / ! ;+ smoothlyinterpolatethesetof edge-points( 1 / 0 0 0 / ( 2
into acurve �( .

(The methodof interpolationwill not concernus here.)
Thus, the set �� is in one-to-onecorrespondencewith the
set
�-34� 1'576 6 6 5 � 2 . Supposethereare 8 edge-points

detectedper site, i.e. 9 ��& 9$,:8<; " (in reality, of course,9 ��& = 9�>,:9 �'& ? 9 ); thenthesizeof thesetof observedcurves
is 9 �� 9 ,-9 � 9 ,48 2 .

In thecaseof objectlocalization,thesameprinciplemay
beappliedfor finding observedcurves,only now thereare
nonaturalcandidatesfor searchregions,asonecannotiniti-
atesearchbasedonlocalizationin thepreviousframe(since
thereis no previousframe). Instead,let thesetof all edge-
pointsin the imagebe denoted@ ; thentake

��& ,A@B; " ,
and
�

and �� areconstructedfrom the C ��&ED 2& F 1 asbefore.
That is, an “observed curve” may be generatedby select-
ing a subset! out of any of the edge-pointsin the im-
age, in a particularorder, and then interpolatingbetween
them.(For simplicity, repeatedpointsareallowed.) Again,9 �� 9 ,-9 � 9 ,48 2 , but 8G,-9 @H9 in this caseis muchlarger
than 8 is for tracking.

The set � is generatedfrom training curvesbeforethe
algorithmis run. It is assumedthatthissetof learnedcurves
is afinite dimensionalmanifold(asit will bein all casesthat
will bepracticallyencountered),hasdimensionI , andmay
bespecifiedparametricallyas� ,JC �K L M$NPO MQ)SR D
where R is someknown, I -dimensional,real, compact,
convex set(for example, R ,UT V / . W X ), and �K L 6 N is a func-
tion which mapsthe points in R to points in curve space.
Someof theparametersmayrepresentfamiliar transforma-
tions; for example, M�1 / 0 0 0 / M$Y could representa subsetof
theaffine transformations.In fact,givena particulargroup
of transformations,a usefullearningschemewould involve
finding an invariant to this group for eachof the training
curves,andlearningon theseinvariants;then,thegroupof
transformationscanbeaddedin assuggestedabove. In this

case,learningis only usedto understandthenon-affinede-
formations,for which thereis no guidingtheoreticalstruc-
ture. For the moment,no particular learning methodis
outlined; instead,it is simply assumedthat � asspecified
aboveis known.

1.4 Recastingthe Problem

Using the parametricform for � allows the problemto
bere-written Z�[ \]^ _ ]`�a b _ cHd �('e �K L M$N d
However, approximatingthe squareof the f�g norm by its
Riemannsumgives

d �(�e �K d g ,Jh7ij d �( L k N�e �K L k N d g l km f! 2n& F 1 d ( & eQK & d g
where ( & , �( L k & N / K & , �K L k & N , and k & , iEo & p 1 q2 p 1 . Note
that ( 1 / 0 0 0 / ( 2 is simply the set of edge-points,culled
from thesets

� 1 / 0 0 0 / � 2 , which wereinterpolatedto give�( ; sampling �( gives back the original points. Denoting( , L ( 1 / 0 0 0 / ( 2�NP)sr g 2 andsimilarly for K , thenthemini-
mizationproblemmaybeapproximatedwell byZ�[ \^ _ `�a b _ c d ('eQK L M$N d
if ! is sufficiently large. Note that the norm in the above
is thenow thenormalEuclideannormin r g 2 ,

� , � 1�56 6 6 5 � 2 asbefore,and K L 6 N�O r X�t r g 2 .
Therecastproblemis still notobviouslyamenableto so-

lution, as
�

is still discreteandvery large,while R is con-
tinuous. Below, analgorithmwill be proposedfor solving
for the globaloptimum. In particular, if

l u
is the valueof

the global minimum, then the algorithmwill be shown to
give a valueof at most l u'vxwHl , for a specifiedwHl . Fur-
ther, complexity boundson the algorithm, in termsof 8 ,! , and w�l will be established.The essenceof the algo-
rithm is containedin thefollowing theorem.

2 A Theorem on Global Optimization

Beforestatingthetheorem,it will benecessaryto make
two definitions.

Definition: y is said to be an z -cover of the compact
set R if ; M{)|R , } ~ ) y such that d ~ e�M d:� z ,
and z is the smallest such value. Alternatively, z{,Z�� � b _ c T Z�[ \E� _ � d ~ eSM d W . (Note that the maximum is
well-definedsince R is compact.)



Definition: Let �7� �$�x��� �� � , so that �7� �$�4�U��� ��� � .
Let �$� � �$� be the largesteigenvalue of the �4�x� matrix�S��� �$� �7� �$� . Then for any ���<� , define �*� �H�-�� ��  ¡ � ¢ £ �$� � �$� ¤ � ¥ � .

We are now ready to state the theorem which will
allow us to attack the tracking / localization problem,��¦ §E¨ ¢ ©�ª � ¢ «�¬ ­H®4¯ � �$� ¬ . The import of the theoremwill
bediscussedafterits formal statement.

Theorem: Let ° be any ± -cover of � . Further, let ² ³S���¦ §E¨ ¢ ©�ª � ¢ «�¬ ­P®S¯ � �$� ¬ andlet ² ´�� �H¦ § � ¢ «s¬ ­ ´ ®S¯ � �$� ¬ ,
where ­ ´S�   µ ¶���¦ §$¨ ¢ © � �H¦ §E· ¢ ¸S¬ ­�®7¯ � ¹ � ¬ � . If ºH²J�² ´ ® ² ³ , then»H¼ ºH² ¼-½ �'� � ��� ± �² ³¿¾ÁÀ �*� ��� ± Â

This theorem presentsa problem whose solution is
amenable,and comparesthe objective function value it
givescomparedto theoptimal, ² ³ . In particular, the prob-
lem
�H¦ §E¨ ¢ ©�ª · ¢ ¸S¬ ­�®J¯ � ¹ � ¬ can be solved, albeit ineffi-

ciently, by exhaustivesearchthroughthetwo discretesetsÃ
and° . If the ­ -minimizingargumentis labelled­ ´ , thenthe
quantity ² ´�� ��¦ § � ¢ «s¬ ­ ´ ®x¯ � �$� ¬ is of interest;the fact
that the minimizing � is never solved for doesnot matter,
sinceour contourestimateis basedon ­ ´ ratherthan ¯ � �$´ �
(seesection1.2).Thetheoremgivesanupperboundonhow
far away ² ´ canbe from ² ³ ; this bounddependscritically
on ± , aparameterwhich indicateshow finely ° samples� .

3 Proof of the Theorem

Begin by consideringonly two sampledobservedcurves,­ � and ­ � . Make thefollowing definitions:for Ä���Å Æ À , letÇ �$È��   µ ¶��H¦ § � ¢ «s¬ ­ È ®Q¯ � �$� ¬ ÆG² È�� ¬ ­ È ®Q¯ � �$È � ¬ÇJÉ�$È��   µ ¶��H¦ §E· ¢ ¸S¬ ­ È ®Q¯ � ¹ � ¬ Æ É² È�� ¬ ­ È ®Q¯ � É�$È � ¬Ç�Ê�$È��   µ ¶��H¦ §E· ¢ ¸S¬ �$È ® ¹ ¬ Æ Ê² È�� ¬ ­ È ®7¯ � Ê�$È � ¬
Then:

² �� ® ² � � � ¬ ­ � ®7¯ � � � � ¬ � ®x¬ ­ � ®7¯ � ��� � ¬ �¼ ¬ ­ � ®7¯ � Ê� � � ¬ � ¾ ¬ ¯ � Ê� � � ®Q¯ � � � � ¬ �®4¬ ­ � ®Q¯ � ��� � ¬ �¼ ¬ ­ � ®7¯ � Ê� � � ¬ � ¾ ¬ ¯ � Ê� � � ®Q¯ � � � � ¬ �®4¬ ­ � ®Q¯ � Ê��� � ¬ � ¾ ¬ ¯ � Ê��� � ®Q¯ � ��� � ¬ �� Ê² �� ® Ê² � � ¾ ¬ ¯ � Ê��� � ®Q¯ � ��� � ¬ � ¾ ¬ ¯ � Ê� � � ®Q¯ � � � � ¬ �
wherethe secondand third inequalitiesare both applica-
tionsof thetriangleinequality. Now:

1.
Ê² �'Ë É² � by definition,so ® Ê² � � ¼ ® É² � �

2. Expanding
Ê² �� � ¬ ­ � ®7¯ � Ê� � � ¬ � givesÊ² �� � ¬ ­ � ® � ¯ � � � � ¾ �7� Ì� � � � Ê� � ® � � � ¤ ¬ �

where �7� �$�s�Í� �� � and Ì� � �B� . This is the multi-
variablemeanvaluetheorem,which is valid dueto the
convexity of � [3]. Thus,Ê² �� � ¬ ­ � ®Q¯ � � � � ¬ � ¾ ¬ �7� Ì� � � � Ê� � ® � � � ¬ �¾ÁÀ � ­ � ®Q¯ � � � � � � �7� Ì� � � � Ê� � ® � � �

(a) ¬ ­ � ®Q¯ � � � � ¬ �'�4² �� ¼ É² ��
(b) ¬ �7� Ì� � � � Ê� � ® � � � ¬ ���J� Ê� � ® � � � ���S��� Ì� � � �7� Ì� � �� Ê� � ® � � � . Since ° is an ± -cover of � , Î ¹

such that ¬ � � ® ¹ ¬ ¼ ± . But by definitionÊ� � �   µ ¶���¦ §E· ¢ ¸S¬ � � ® ¹ ¬ ; thus, ¬ Ê� � ® � � ¬ ¼ ± .
But then� Ê� � ® � � � � � � � Ì� � � �7� Ì� � � � Ê� � ® � � � ¼ �$� � Ì� � � ± �¼AÏ ��  ¡� ¢ « �$� � �$� Ðs± �'Ñ � � � ��� ± �
where�$� � Ò � and �*� Ò � aredefinedasbefore.

(c) Finally,� ­ � ®Q¯ � � � � � � �7� Ì� � � � Ê� � ® � � �¼�Ó � ­ � ®Q¯ � � � � � � �7� Ì� � � � Ê� � ® � � � Ó¼ ¬ ­ � ®Q¯ � � � � ¬ ¬ �7� Ì� � � � Ê� � ® � � � ¬
wherethe latter inequalityis dueto theCauchy-
Scwartz inequality. But ¬ ­ � ®Á¯ � � � � ¬ �B² � and
fromthepreviousargument¬ �7� Ì� � � � Ê� � ® � � � ¬ ¼�*� ��� ± . Thus, � ­ � ®7¯ � � � � � ���7� Ì� � � � Ê� � ® � � � ¼² � �*� ��� ± .

3. Usingthemeanvaluetheoremonceagain,¬ ¯ � Ê�$È � ®Q¯ � �$È � ¬ � � ¬ ¯ � �$È � ¾ �7� Ì�$È � � Ê�$È ® �$È � ®7¯ � �$È � ¬ �� ¬ �7� Ì�$È � � Ê�$È ® �$È � ¬ �¼ � � � ��� ± �
Thus,² �� ® ² � � ¼ É² �� ¾ � � � ��� ± � ¾7À ² � �*� ��� ± ® É² � � ¾ � � � ��� ± �¾ � � � ��� ± � � É² �� ® É² � � ¾ ½ � � � ��� ± � ¾ÁÀ ² � �*� ��� ±
Theabove inequalityis valid for any ­ � and ­ � . Now, con-
sider in particular ­ �Q� ­ ³7�   µ ¶���¦ §E¨ ¢ © � �H¦ § � ¢ «s¬ ­H®¯ � �$� ¬ ¤ and ­ � � ­ ´Q�   µ ¶���¦ §E¨ ¢ © � �H¦ §E· ¢ ¸S¬ ­H®4¯ � ¹ � ¬ ¤ .
Thenby definition,

É² � ¼ É² � , sothat² ´ � ® ² ³ � ¼ ½ � � � ��� ± � ¾ÁÀ ² ´ �*� ��� ±



Experiment Ô Õ VideoRate Resolution RunningSequence Accuracy
Finger 80 20 30 Hz 320by 240 202frames= 6.7s 100%
Lips 80 20 13 Hz 320by 240 130frames= 10.0s 94 %

Table 1. Summar y of the experiments.
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However,

ï ñ Þ ï â í ðí î à Ú ï since
Ö Ù'òxó

, sothat

ô ÖHÚBÛ Ü'Ý Þ ß�à á ÝÖ × âÁã Ü*Þ ß�à á ÚBÛ Ü'Ý Þ ß�à á ÝÖ Ù âÁã Ü*Þ ß�à á�õ
4 Complexity and Implementation

Thecomplexity of the optimizationprocedureis asfol-
lows. With no modification,theproblemöH÷ øù ú û�ü ý ú þ�ÿ � Ø�� Þ � à ÿ
hascomplexity

� Þ ���	� 
�� à since � ��� ä ��� . However, if
theproblemis solvedasö�÷ øý ú þ 
 ö�÷ øù ú ûSÿ � Ø�� Þ � à ÿ �
andit is notedthatöH÷ øù ú ûSÿ � Ø�� Þ � à ÿ Ý ä ö�÷ øù � ú û�� ü � � � ü ù ��ú û�� ��� ��� ÿ � � Ø�� � Þ � à ÿ Ýä ��� ��� ö�÷ øù � ú û�� ÿ � � Ø�� � Þ � à ÿ Ý
thenthecomplexity is reducedto

� Þ � Ô � 
�� à (sincethelat-
ter stephasa complexity of

� Þ � Ô à ). Further, usinga re-
sultfrom computationalgeometry, it canbeshown thateach
minimizationof the form ö�÷ ø ù � ú û�� ÿ � � Ø�� � Þ � à ÿ canbe
performedwith

� Þ � �  !��à complexity, leadingto anoverall
complexity of

� Þ Ô � 
�� � �  !��à . (Note: in orderto gainthis� �  factor, it is necessaryto incur
� Þ �"� �  !��à in overhead

to calculatethe relevantVoronoi diagram;however, this is
negligible in the schemeof things.) It is useful to convert
the complexity

� Þ Ô � 
�� � �  !��à into an expressionwhich
dependson ��# Ô , and

ô Ö
. Usea dimensionalargument.

Let 
 be an á -covering of ß ; thenusing somethingakin
to sphere-packing,it is clear that � $ % Þ ß�à'&"� 
�� á ( , where) ä Ö * + Þ ß�à ä Ö * + Þ ,*à . That is, � 
���-:á .�( . Now, as-
sumingthat

ô Ö
is fairly small, then it canbe shown thatá is fairly small, so that the upperboundon

ô Ö
from the

optimizationtheoremis proportionalto á (that is, the term
in á Ý dropsout). In this case,thealgorithmhascomplexity� Þ Ô ô Ö .�(!� �  !��à .

5. Resultsand Conclusions

Two setsof resultsarepresentedto illustratethe effec-
tivenessof the proposedtracker: a flexing finger and a
speaker’s lips. A summaryis given in Table 1. In both
cases, /, waslearnedin thefollowing manner:0 Eachtrainingcurve,representedasthe ã Õ coefficients

in a pair of Õ	1 2 order Legendrepolynomial expan-
sions(oneeachfor 3 and 4 ), wastransformedinto its
euclidean-similarityinvariant,representedin thesame
basis.0 A onedimensionalmanifoldwaslearnedby smoothly
interpolatingthroughall of theinvariants.This degree
of freedomis capturedin thevariable5 � .0 4 extra dimensionswere then added,corresponding
to the group of euclideansimilarity transformations:
translationin both x- andy-directions,rotations,and
scaling.Thesedegreesof freedomarerepresentedby5 Ý # 5 å # 5�6 # 5�7 .0 Thus,both /, and , arefive-dimensionalmanifolds.ß is chosento be 8 ó # ï 9 7 for convenience.

Theedge-mapin thecaseof thefingerwasgeneratedfrom
the gray-scaleintensity; clutter is in the form of both the
backgroundwriting (much of which is small, and there-
fore leadsto many extraneousedges)as well as the self-
clutter of the doubledover finger. A sequenceof tracked
framesis shown in Figure 1; in this instance,the tracker
got all 202 tracked frames close to correct. Note that
motion consistsof a combinationof non-rigid deforma-
tions (flexing) as well as rigid motions (translation); the
tracker is successfulwith both. In thecaseof thespeaker’s
lips, the edge-mapwas generatedfrom the greenportion
of the RGB image,which hasslightly bettercontrastthan
the intensity; in addition, lipstick was usedto help high-
light contrast. Clutter is clearly visible in the edge-map
shown in Figure2, due to the detectionof many extrane-
ous edges,as well as the fact that over the searchrange
the lips interferewith eachother. A sequenceof tracked
framesis shown in Figure 2, and the tracker got 94% of
the tracked framescorrect;however, equally importantas
this high successrate is the ability to recover from the
occasionalerror, as shown in Figure 3. Full video se-
quencesof both tracking experimentscan be viewed at
http://himmel.hrl.harvard.edu/daniel/research.html.



frame30 frame45 frame80 frame154 frame201

Figure 1. Tracking a flexing and translating fing er.

frame17 frame18 frame75 edge-mapfor frame75 frame130

Figure 2. Tracking a speaker’ s lips.

frame48 frame49

Figure 3. Recovering from mistakes.

In thelight of thesesuccessfulexperimentalresults,it is
worth notingsomeof theadvantagesthatarepresentedby
this algorithmover othercontourtrackingapproaches.As
opposedto the deformabletemplateapproach,thereis no
needfor hand-constructedmodelsof theobject’sgeometry;
ratherthis is learned.Whereaselasticsnakesusenospecial
informationabouttheobjectunderstudy, thelearnedinfor-
mationusedby thesubsettracker allows for moreaccurate
tracking.Furthermore,thesubsettrackeris computationally
lessburdensomethanthesetwo typesof trackers.Thesub-
settrackerdealswell with clutter, which is amainfailing of
theKalmantracker. All of theadvantagesreferredto above
are matchedby thoseof the condensationtracker. How-
ever, the condensationtracker relieson learneddynamical
information,asopposedto the morebasicshapeinforma-
tion learnedhere. Therearemany situationsin which the
availabletrainingcurves,which areusedfor learningprior
to the running the algorithm, may be sufficient for learn-
ing thespacein whichobject“li ves,” but areinsufficient for
learningthedynamicsof theobject.

Directionsfor future researchinclude the development
of an efficient multistagealgorithm for maximizing over
the set :<;>= ; suchan algorithmwould have a tree-like,
or coarse-to-finestructure,which allows subsetsof = , in
which the minimandcannotpossibly reside,to be elimi-
natedasthealgorithmprogresses.In addition,analgorithm
for learninga multidimensionalmanifoldwould beof ben-

efit. In thecurrentexperiments,one-dimensionalmanifolds
was learnedin invariantspace;however, it is quite likely
that the true manifoldswereof higherdimension.(In this
scenario,the one-dimensionalmanifold is simply a subset
of the higherdimensionalmanifold.) Successin this area
would alsoallow for moreefficient implementationof the
algorithm. Finally, the algorithmmay be extendedto the
taskof object localization,in which an object is to be lo-
catedwithin a singleimage.Edge-searchcanno longerbe
initiated at the previous frame’s contourestimate;thus, in
principle any edge-pointin the imagemay be potentially
partof therelevantcurve. Theability to searchthroughthe
resultinghugespaceof observedcurvesreliesonthe ? @ A!B
termin thecomplexity, asdiscussedin section4.
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