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Abstract

The goals of this paper are twofold. The first is to present a new sampling theory for curves, based on a new
notion of local feature size. The properties of this new feature size are investigated, and are compared with the
standard feature size definitions. The second goal is to revisit an existing algorithm for combinatorial curve re-
construction in spaces of arbitrary dimension, the Nearest Neighbour Crust of Dey and Kumar [Proc. ACM-SIAM
Sympos. Discrete Algorithms, 1999, pp. 893–894], and to prove its validity under the new sampling conditions.
Because the new sampling theory can imply less dense sampling, the new proof is, in some cases, stronger than
that presented in [Proc. ACM-SIAM Sympos. Discrete Algorithms, 1999, pp. 893–894]. Also of interest are the
techniques used to prove the theorem, as they are unlike those used used in the curve reconstruction literature to
date. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The goals of this paper are twofold. The first is to present a new sampling theory for curves, based on a
new notion of local feature size. The properties of this new feature size are investigated, and are compared
with the standard feature size definitions employed in many papers on combinatorial curve and surface
reconstruction, including [1]. The second goal is to revisit an existing algorithm for combinatorial curve
reconstruction in spaces of arbitrary dimension, the Nearest Neighbour Crust of Dey and Kumar [8], and
to prove its validity under the new sampling conditions. Because the new sampling theory can imply less
dense sampling, the new proof is, in some cases, stronger than that presented in [8]. Also of interest in
their own right are the techniques used to prove the theorems, as they are unlike those used in the curve
reconstruction literature to date.
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The problem of combinatorial curve reconstruction, in the sense of this paper, may be framed as fol-
lows. Given a curve embedded in a Hilbert Space of arbitrary dimension, andN sample points from this
curve, is it possible to construct a new curve based only on knowledge of the samples which is topolog-
ically equivalent to the original curve, and is sufficiently close to it? Hidden in the problem statement
are the three principal difficulties that inhere in the problem. First is the combinatorial nature of the
problem: the points areunorganized, that is, they may come in any order to the user. This fact precludes
any straightforward reasoning about the adjacency relationships between samples. It may be argued that
some topological and/or geometrical constraints on the curve to be reconstructed may be used to help
alleviate this problem. This, in fact, is not the case; for the second obstacle associated with the problem
of curve reconstruction is that no prior topological or geometrical information is available. Rather, both
the topology and geometry of the underlying curve are assumed to be unknown; all available informa-
tion about the curve is contained in the samples. The final hurdle is that the algorithm must work for
embedding spaces of arbitrary dimension. The algorithm of Dey and Kumar, unlike several of its prede-
cessors (see Section 4), is designed to work not only for curves embedded in the plane, but for curves
living in any embedding space which is a Hilbert Space. Indeed, the embedding space need not even be
finite-dimensional; it may, for example, be the space of functionsL2(R).

Of course, such a problem may not be solved without some additional assumptions on the curve
samples. In particular, a common assumption pertains to the fineness with which the curve is sampled.
A standard approach involves defining a local feature size,φ(·), which is a function mapping the curve
to real numbers greater than 0. Intuitively, at any given point, this feature size should indicate roughly the
size of the curve’s features at that point. Thus, in relatively flat parts of the curve,φ will be quite high,
while in areas with greater curvature, or which pass close to other parts of the curve, we expect thatφ

will be much smaller. Given such aφ, then for 0< r < 1,X is said to be anr-sampling of a curveC if
(a)X ⊂ C and (b)∀c ∈ C, ∃x ∈X such that‖c− x‖< rφ(c). This notion of sampling is plausible, since
areas which are relatively featureless can be sampled sparsely, while areas with more features must be
sampled relatively more densely. An algorithm for curve reconstruction is usually established given such
a sampling condition, namely, assuming that the samples form anr-sample of the curveC, andr is less
than some critical sampling parameterr∗.

As a result, the particular definition of the feature sizeφ plays an important role in both the statement
of the theorem, i.e., under what conditions the algorithm will yield a provably correct reconstruction, as
well as the shape of the proof. In this paper, a new definition of the local feature sizeφ will be given.
This definition is geometrically plausible, and will be discussed at length in Section 3. It will also be
compared with the standard definition, used, for example, in [3,8]. In Section 4, we briefly review the
Nearest Neighbour Crust of Dey and Kumar. In Section 5, we present the proof of the algorithm’s va-
lidity, using the new definition of feature size; in consequence, the techniques used to prove the result
differ greatly from those in [8]. It may be the case that such methods are of use in proving related results,
such as combinatorial surface and manifold reconstruction. Finally, in Section 6 we show some results
of applying the algorithm, and discuss aspects of complexity.

2. Previous work

The problem of combinatorial curve reconstruction has been discussed for some time, with early works
focusing on various heuristics [7,11,17]. Algorithms which offer provably correct reconstructions were
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first studied in the case in which sampling was uniform [5,6]. Amenta et al. [3] provided the first provably
correct reconstructions, the crust and theβ-skeleton, in the case of non-uniform sampling, using the more
general sampling condition mentioned in Section 1. (Note that the prior work of Melkemi [15] contains
similar results.) Other algorithms use a similar sampling condition, but present modified algorithms: that
of Dey et al. [9] is designed to provide greater self-consistency, while that of Gold and Snoeyink [13]
leads to a more conservative reconstruction. The paper of Dey and Kumar [8], which is discussed in this
paper, generalizes curve reconstruction in a different way, by allowing for the embedding dimension to
be general; all of the other algorithms work only for curves embedded in the plane.

All of the algorithms mentioned thus far are able to reconstruct smooth curves. More recent efforts
have focused on the reconstruction of curves with cusps. Giesen [12] presented the first work which
addresses the problem of cusps; he showed that a global approach, which sought to reconstruct the curve
by finding the TSP tour amongst the samples, would lead to a provably correct reconstruction. Althaus
and Melhorn [1] made this problem tractable by showing that the TSP could be found in polynomial time
in this case. The deficiency of these approaches is that they assume that the curves are simply connected;
using a new algorithm which does not have provable properties, Dey and Wenger [10] achieve good
experimental results for multiply connected non-smooth curves. Finally, there is the somewhat unrelated
“minimal interpolant” algorithm of Petitjean and Boyer [18], which assumes that the underlying curve
itself must be a simplicial complex, thereby leading to a form of self-consistency.

Finally, there exists the related work on combinatorial surface reconstruction. In addition to some of
the work in the field of graphics, such as [14], the computational geometry literature provides several
examples, such as the algorithms of Amenta and Bern [2], and the somewhat simpler algorithm by
Amenta et al. [4].

3. The sampling theory

Before explaining the new definition of local feature size, we must introduce some notation. The
embedding space isZ, a real Hilbert Space. The inner product onZ is denoted〈·, ·〉 : Z × Z→ R, and
the norm is‖z‖ = 〈z, z〉1/2. The results to be presented, if appropriately modified in minor ways, would
also apply to complex Hilbert Spaces; however, the extra notation tends to obfuscate the results. A curve
C is a C1 1-manifold embedded inZ. As in [3], it is assumed thatC has neither endpoints nor self-
intersections. The samples of the curve are denotedX ⊂ C, with |X| = N . The curve hasm connected
components; theith has arc-lengthLi , and a unit-speed parameterization given byfi :R→ Z, wherefi
is C1 and periodic with periodLi . Thus,C may be written

C =
m⋃
i=1

{
z ∈Z: z= fi(u), u ∈ [0,Li]

}
.

The tangent at a pointc on the curve is denotedt (c), which is equal tof ′i (u) wherec = fi(u); note that
‖t (c)‖ = 1. A normal to the curve atc is denotedn(c), and is also generally assumed to have unit norm.

A ray between the pointsz1 andz2 is denotedρ(z1, z2) and is the vectorz2− z1. Let α(z1, z2) be the
angle between two vectorsz1 andz2. Givenp, δ ∈ Z, interpretp as a point andδ as a direction; then a
beamis defined by

beam(p, δ)= {
z ∈Z:

∣∣α(
ρ(p, z), δ

)∣∣ � β
}

whereβ is referred to as thebeam-width.
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Fig. 1. Illumination. Portions of a curve are illustrated in bold; the normal to the curve is dashed; and the boundary of the beam
is shown in thin solid lines. The pointc′ is illuminated by the pointc; the pointsc′′ andc′′′ are not.

We may now turn to the task of defining the feature size; this definition rests on the concepts of
illumination and its close relative,visibility. A point c2 ∈ C is said to beilluminatedby c1 ∈ C if there
exists abeam(c1, n(c1)) � c2. c1 is said to bevisible to c2 if c1 illuminatesc2 or c2 illuminatesc1. Note
that visibility is symmetric:c1 is visible toc2 ⇔ c2 is visible toc1. For an illustration of the concept of
illumination, see Fig. 1. Now, letΘ be the visibility set,

Θ(c)= {c′ ∈ C: c′ is visible toc}.
Then we may define thevisible distanceat c by

θ(c)= min
c′∈Θ(c)

‖c− c′‖.
Now, defining

Φ(c)= {
c′ ∈ C: ‖c′ − c‖� θ(c)

}
leads to our definition oflocal feature size,

φ(c)= min
c′∈Φ(c)

θ(c′).

Before investigating any more formal properties ofφ(c), let us spend some time developing the
intuition for why this quantity respects features. One can imagine, at a particular pointc on the curve,
shining a beam of light which illuminates other parts of the curve; see Fig. 1. The beam, which subtends
an angle 2β, can be thought of as tethered to the curve atc using a hinge which can rotate about the
curve; thus, the beam can shine in any direction which is normal to the curve at the point from which
it emanates. The points which are illuminated by the beams are said to be illuminated byc. Looking at
things from the opposite vantage point, we may wonder about which points illuminatec. In combination,
all of these points are said to be visible toc: eitherc can shine its beam on one of these points, or one of
these points can shine its beam onc.

Intuitively, the proximity of visible points toc determine how featured this part of the curve is. Fig. 2
demonstrates how the notion of visible distance,θ(·), captures features. In Fig. 2(a), a feature near the
point c is shown. This feature has a source which is “local toc”, i.e., it is caused by the curvature of the
curve nearc. This kind of feature will be captured by the notion of visible distance, asc′ is illuminated by
c, and thus we have thatθ(c)� ‖c−c′‖. Figs. 2(b) and 2(c) show examples of features whose sources are
not “local” to c, but rather are “global”, i.e., are due to completely different parts of the curve. In Fig. 2(b),
the source of the feature is a different part of the same connected component, whereas in Fig. 2(c), the
source is a different connected component. Once again, the relevant feature is illuminated byc, and thus
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(a) (b)

(c) (d)

Fig. 2. Examples of visible points, illustrating the concept of visible distance. See accompanying discussion in the text.

the concept of visible distance captures the proximity of this feature. Thus far, all examples have shown
the feature being illuminated by the pointc; Fig. 2(d) shows an example where this doesn’t happen. If
the notion of visible distance atc were based solely on the points which are illuminated byc, then this
feature would not be captured. However, note thatc is illuminated by the pointc′ on the feature; thus,c′
is visible toc, and the feature is in fact captured by the visible distance. This is the reason that the notion
of visibility is defined symmetrically.

Thus far, we have discussed the intuitive meaning of the visible distanceθ(·). The question now
arises: why not define the local feature size asθ(·)? The answer is that, largely for technical reasons, it is
necessary for the local feature size to be Lipschitz, i.e., it must satisfy

∣∣φ(c1)− φ(c2)
∣∣ �K‖c1− c2‖

for all pointsc1 andc2 on the curve, and someK > 0. Whileθ does not possess this property,φ does.φ(c)
is found taking the smallest value ofθ(·) in a small neighbourhood of the curve aroundc; interestingly,
the size of the neighbourhood itself depends onθ(c).

Let us compare some of the properties of the new feature sizeφ(·) introduced in this paper, with
the more common notion of feature size, denotedξ(·), used in [8] (and by many other papers as well).
Note that both this paper, as well as that of Dey and Kumar [8], establish homeomorphic reconstruction
assuming1

3-sampling. It is thus quite important to know the relative sizes ofφ andξ . For example, if it
were the case thatξ(c)� φ(c) at all points on all curves, then the results established by Dey and Kumar
[8] would be strictly better than those established here, as they would require less dense sampling to
achieve the appropriate reconstruction. What we shall show now is that this is not the case; rather, there
are cases in whichξ(c) > φ(c), and there are also cases in whichφ(c) > ξ(c). Let us examine each of
these cases in turn.

Focus on the curveC = {z ∈ R
2: ‖z‖ = 1}, i.e., the unit circle in the plane. Clearly, the medial axis

is just the single point(0,0). Thus,ξ(c)= 1 for all pointsc on the curve. Computingφ(c) is somewhat
more complex; let us begin by examining the set of points which are illuminated by a givenc. For
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Fig. 3. For a circle, we have thatξ(c) > φ(c). Fig. 4. For an oval, we have thatφ(0,−1) > ξ(0,−1). If a� 1,
thenφ(c)= 2ξ(c) for most points on the oval.

concreteness, fixc = (0,−1). Referring to Fig. 3, we can see that for the visible pointc′, we must have
that

‖c− c′‖ = ∥∥(−1,0)− (−sin2γ,cos 2γ )
∥∥=√

2(1+ cos 2γ ).

This function is monotonically decreasing inγ , and we know that any illuminated pointc′ must have
|γ |� β, whereβ is the beam-width. Thus,

min
|γ |�β

‖c− c′‖ =√
2(1+ cos 2β).

Due to the circle’s symmetry, it is easy to show that the only points which illuminatec are those which
are illuminated byc. Thus,

θ(c)=√
2(1+ cos 2β).

Once again, due to the circle’s symmetry, we must have thatθ(c) is the same for allc, which leads finally
to

φ(c)=√
2(1+ cos 2β).

In order to compareφ(c) with ξ(c), we need to know something more about the beam-widthβ. It will
turn out that appropriate reconstruction is only provably guaranteed withβ � 74◦. In this case, we have
that

φ(c)� 0.55

and therefore,ξ(c) > φ(c) for all pointsc on the circle.
The situation is quite different for the curve illustrated in Fig. 4. This figure shows an oval, i.e., a curve

defined as

C = {
z ∈R

2: |z1|� a, z2= 1
}∪ {

z ∈R
2: |z1|� a, z2=−1

}
∪ {
z ∈R

2: ‖z− (a,0)‖� 1, z1 � a
}∪ {

z ∈R
2: ‖z− (−a,0)‖� 1, z1 �−a}.

In other words, the oval is defined as two line segments and two semi-circles.a is a parameter which
gives the lengths of the line segments. The medial axis is quite easy to compute, and is just the set
{z ∈ R

2: |z1|� a, z2 = 0}. Thus, as in the case of the circle,ξ(c)= 1 for all pointsc on the oval. Now,
focus on the point̂c= (0,−1). If a � 2, then the closest point thatĉ illuminates if the point(0,1). A brief
inspection also shows that there is no point which is closer than(0,1) which illuminatesĉ. Thus,

θ(ĉ)= ∥∥(0,−1)− (0,1)∥∥= 2.
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Furthermore, ifa � 4, then all pointsc within a distance ofθ(ĉ)= 2 away fromĉ (namely, the points
c = (u,−1) with |u|� 2) will also haveθ(c)= 2, by the argument used above. Therefore, ifa � 4, we
have thatφ(ĉ)= 2. In other words,φ(ĉ)= 2ξ(ĉ); the new notion of feature size is twice as big (atĉ) as
the standard definition, and therefore would lead to less dense sampling. Indeed, ifa is quite large, i.e.,
the oval is very long and thin, then most pointsc on the oval (all except those near the semi-circular caps)
will satisfy φ(c)= 2ξ(c).

To summarize, then, there are points on curves for whichξ(c)� φ(c), and there are points on curves
for whichφ(c)� ξ(c). Since this paper shows that the NN-crust algorithm is valid for1

3-sampling using
the feature sizeφ(c), we have in some cases improved upon the result of Dey and Kumar [8], which
shows that the algorithm is valid for13-sampling using the feature sizeξ(c). Combining the results of [8]
and those of this paper, we have the following. LetΛ(c)=max{φ(c), ξ(c)}; then the NN-crust produces
a homeomorphic reconstruction of a curveC using 1

3-sampling with the feature size given byΛ(c). This
is a strict improvement over [8].

4. The algorithm

The algorithm, which Dey and Kumar refer to as the “Nearest Neighbour Crust”, is very simple, and
is described in Fig. 5.

The curve is reconstructed as a simplicial complex, i.e., as a polygonal approximation to the underlying
curve. The algorithm therefore tries to find the two sample points which are adjacent to a given sample.
The idea is that one of these points is always the point which is closest to the sample in question. The
second adjacent point is, in some sense, the sample which is “on the other side” of the original. Thus, ifa

is the direction from the sample to its closest point, the other adjacent point will be anx′ which satisfies
〈a, x′ − x〉< 0; it must lie in the opposite halfspace. Indeed, it is taken to be the closest such point.

Note that this formulation relies on the fact that the curveC is C1. If the curve were merelyC0, then at
cusps, the two adjacent points could very well lie in the same direction.

The algorithm proposed is very simple, both to understand and to implement. However, it is quite
another matter to establish the validity of the algorithm, namely to demonstrate that the reconstruction
which it provides is both homeomorphic to the original curve, as well as sufficiently close to it. The next

Ĉ = RECONSTRUCT(X)
Ĉ = ∅
for eachx ∈X
x̂ = argminx ′∈X−{x} ‖x ′ − x‖
a = x̂ − x
Xo = {x ′ ∈X: 〈a, x ′ − x〉< 0}
x̃ = argminx ′∈Xo ‖x ′ − x‖
&̂= {z ∈Z: z= (1− λ)x + λx̂, λ ∈ [0,1]}
&̃= {z ∈Z: z= (1− λ)x + λx̃, λ ∈ [0,1]}
Ĉ = Ĉ ∪ &̂∪ &̃

end

Fig. 5. The reconstruction algorithm.
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section addresses these issues in a formal context, and shows under what conditions RECONSTRUCT

leads to a proper reconstruction of the original curve.

5. Proof of the algorithm

For concreteness, let us focus on one particular sample pointx1 ∈ X. Let x2 andx3 be adjacent to
x1. Furthermore, without loss of generality, let‖x2 − x1‖ � ‖x3 − x1‖. Assume thatx1, x2, andx3 lie
on theith connected component ofC. Let the parameters corresponding toxk be uk ; assume, without
loss of generality, thatu3 < u1 < u2. (The orientation of the parameterization can always be flipped to
accommodate this result.) Also, letdj (u)= ‖fj (u)− x1‖.

In what is to follow, the main goal will be to demonstrate thatx̂ = x2 and x̃ = x3 if sampling is
sufficiently dense; i.e., that the two points chosen by RECONSTRUCT are adjacent tox1. Lemmas 1
and 2 give a particular partition of the points on theith component of the curve. This partition has
the three useful properties outlined in Lemma 2, properties which will be utilized throughout the
proof.

Lemma 1. ∃u+, u− such that(a) u1< u
+ � u− < u1+Li and(b) d ′i (u+)= d ′i (u−)= 0.

Proof. The derivatived ′i may be calculated as

d ′i (u)=
〈f ′i (u), fi(u)− x1〉
‖fi(u)− x1‖

which exists everywhere but atu = u1. Sincefi is C1, d ′i is everywhere continuous, except atu = u1.
Now, it can be shown that

lim
u→u1+Li : u<u1+Li

d ′i (u)=−1, lim
u→u1: u>u1

d ′i (u)= 1.

Sinced ′i is continuous, by the intermediate value theorem there exists at least onew ∈ (u1, u1+Li) such
thatd ′i (w)= 0. Letu+ be the smallest suchw, and letu− be the largest such; then by definition, we have
thatd ′i (u+)= d ′i (u−)= 0, and thatu1< u

+ � u− < u1+Li . (Note thatu+ = u− is a possibility, if there
is exactly one suchw.) ✷
Lemma 2. Using the definition ofu+ and u− from Lemma1, the set(u1, u1 + Li) can be partitioned
into {L+,N,L−}, whereL+ = (u1, u

+), N= [u+, u−], andL− = (u−, u− + Li). This partition has the
following properties:

(1) u ∈ L+ ⇒ d ′i (u) > 0;
(2) u ∈ L− ⇒ d ′i (u) < 0;
(3) u∗ = argminu∈N di(u) is well-defined, and satisfiesd ′i (u

∗)= 0.

Proof. Properties (1) and (2) follow directly from the definitions ofu+ andu−, see Lemma 1. To prove
property (3), note thatN is a compact set, and thatdi(u) is continuous with respect tou (sinceC is
C1); this implies thatu∗ is well-defined, see for example [16]. Ifu∗ ∈ (u+, u−), then d ′i (u∗) = 0; a
global minimum which is in the interior of a set must also be a local minimum. Ifu∗ = u+, we have



D. Freedman / Computational Geometry 23 (2002) 227–241 235

a boundary solution, for whichu∗ is no longer necessarily a local minimum; however, by the definition
of u+, d ′i (u+)= 0 (see Lemma 1). A similar argument applies in the case ofu−, thereby completing the
proof. ✷

Lemmas 3 and 4 establish the fact that all local minima of thedj (·) functions must be visible tox1.

Lemma 3. Letβ be the beam-width, and let

ψ(c, c′)= |〈c
′ − c, t (c)〉|
‖c′ − c‖ .

If γ = sin(β), then

ψ(c, c′)� γ and ψ(c′, c)� γ ⇔ c′ /∈Θ(c).

Proof. If c′ /∈ Θ(c), thenc does not illuminatec′, andc′ does not illuminatec. Look at the first case.
For any normaln(c), it must be that|α(c′ − c, n(c))|> β. In particular, this must be true for the normal
which lies in the plane defined by placing the tails of the vectorst (c) and c′ − c at the pointc. This
implies that|α(c′ − c, t (c))|� π

2 − β. Finally,

cos
(
α(c′ − c, t (c)))= ψ(c, c′)‖t (c)‖ =ψ(c, c

′)

sinceC has a unit-speed parameterization. This in turn yields thatψ(c, c′) � cos(π/2− β) = sin(β).
The argument for the second case is exactly analogous.✷
Lemma 4. If u∗ is a local minimum ofdj (·) for anyj , andc∗ = fj (u∗) thenc∗ ∈Θ(x1).

Proof. If u∗ is a local minimum ofdj (·), we must have thatd ′j (u
∗)= 0, i.e.,

〈f ′j (u∗), fj (u∗)− x1〉
‖fj (u∗)− x1‖ = 0.

Noting thatt (c∗)= f ′j (u∗), and using the converse of Lemma 3 completes the proof.✷
Lemma 5 shows that distance fromx1 to any point on thej th component on the curve,j �= i, must be

greater than the visible distanceθ(x1). Furthermore, the distance fromx1 to any point which lies in the
part of theith component of the curve given byfi(N), must also be greater than the visible distance.

Lemma 5. LetM= fi(L+)∪ fi(L−)∪ {x1}. Then ifc /∈M, ‖c− x1‖� θ(x1).

Proof. First, examine the case whenc is on theith component ofC. In this case,c /∈M⇒ c ∈ fi(N).
From Lemma 2, we know that∃u∗ ∈ N such thatdi(u∗) � di(u) ∀u ∈ N and d ′i (u

∗) = 0. Thus,
‖c− x1‖� di(u∗). From Lemma 4,

d ′i (u
∗)= 0 ⇒ fi(u

∗) ∈Θ(x1) ⇒ di(u
∗)� θ(x1).

Thus,‖c− x1‖� θ(x1).
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Now consider the case whenc is on thej th component ofC for j �= i. Let u∗ be the global minimum
of dj (·); then‖c− x1‖� dj (u∗). Becausedj is bothC1 and periodic, the global minimum must also be
a local minimum. Thus,fj (u∗) ∈Θ(x1). Using the same argument as above, we may then conclude that
‖c− x1‖� θ(x1). ✷

The essential result given in Lemma 5 can now be used to show that the closest samplex̂ to x1 must lie
in the ith component, either infi(L+) or in fi(L−). Further, it can be shown thatx̂ = x2. These results
are given in Lemmas 6–8, and Theorem 1.

Lemma 6. ∃x12 ∈ C such that‖x1− x12‖ = ‖x2 − x12‖. x12 lies on the same component asx1 and x2,
between them.

Proof. Let

δ(u)= ∥∥fi(u)− fi(u1)
∥∥− ∥∥fi(u)− fi(u2)

∥∥.
Sincefi is continuous, so isδ. Let η = ‖fi(u2) − fi(u1)‖; thenδ(u2) = η, while δ(u1) = −η. By the
intermediate value theorem∃u12 ∈ (u1, u2) such thatδ(u12) = 0; then if x12 = fi(u12), ‖x1 − x12‖ =
‖x2− x12‖. Note thatx12 is not a sample, i.e.,x12 /∈ X. The notationx12 is merely used as a mnemonic
for the reader to rememberx12’s property. ✷
Lemma 7. If X is anr-sampling ofC for anyr � 1, ‖x1− x2‖< 2rφ(x12).

Proof. To establish this result, use Lemmas 1, 2, 4, and 5, substituting the functionsdj (u)= ‖fj (u)−
x12‖ (rather than‖fj (u) − x1‖). In this case, all points on the curve which do not belong toM(x12)

satisfy‖c − x12‖ � θ(x12) � φ(x12). SinceX is anr-sampling ofC, there must existx ∈ X such that
‖x12− x‖ < rφ(x12); by the previous statement, such anx cannot be outsideM(x12) as long asr < 1.
That is, there must exist anx ∈M(x12) which is closer tox12 than are any of the samples which lie
outside ofM(x12). Now, from Lemma 2,d ′i (u) > 0 ∀u ∈ L+(x12), andd ′i (u) < 0 ∀u ∈ L−(x12). As
a result, anyx in M(x12) which minimizesdi must also minimize|u − u12|. There are two possible
candidates,x1 and x2; and ‖x1 − x12‖ = ‖x2 − x12‖. Since bothx1 and x2 are closest tox12, by the
r-sampling condition we must have that‖xi − x12‖ < rφ(x12) for i = 1,2. Finally, by the triangle
inequality,‖x1− x2‖� ‖x1− x12‖+ ‖x12− x2‖< 2rφ(x12). ✷
Lemma 8. If X is anr-sample ofC with r � 1, thenφ(x12)� θ(x1).

Proof. φ(c)=minc′∈Φ(c) θ(c′), where

Φ(c)= {
c′ ∈ C: ‖c′ − c‖� θ(c)

}
.

Thus,φ(x12)� θ(c) for all c such that‖c− x12‖� θ(x12). But in proving Lemma 7, we established that
‖x1− x12‖< rφ(x12)� φ(x12)� θ(x12). Thus,φ(x12)� θ(x1). ✷
Theorem 1. If X is anr-sample ofC for r � 1

2, then‖x2− x1‖� ‖x − x1‖ ∀x ∈X− {x1, x2}.
Proof. There are two cases to consider:x ∈ M and x /∈ M. For the former case, we have noted
from Lemma 2,d ′i (u) > 0 ∀u ∈ L+(x1), andd ′i (u) < 0 ∀u ∈ L−(x1). As a result, anyx in M which
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minimizes di must also minimize|u − u1|. There are two possible candidates,x2 and x3; and by
assumption‖x1 − x2‖ � ‖x1− x3‖, sox2 = argminx∈M ‖x − x1‖. Now, consider the casex /∈M: such
an x was shown to satisfy‖x − x1‖ � θ(x1) (see Lemma 5). However, from Lemma 7, we know that
‖x1 − x2‖ < 2rφ(x12) � 2rθ(x1), where the latter follows from Lemma 8. However, sincer � 1

2, then
2r � 1, and thus‖x1− x2‖< θ(x1). This completes the proof.✷

Lemma 9 shows thatx3 is closer tox1 than all points except possibly those which lie insidefi(L+).
This allows future results to concentrate on the regionfi(L

+).

Lemma 9. If r � 1
2 , x3 is closer tox1 than all x /∈M and allx ∈ L−.

Proof. Using most of the previous lemmata, but focusing onx3 instead ofx2 (and substitutingx13 for
x12) shows that‖x3 − x1‖ < θ(x1). Thus,x3 is closer tox1 than is any samplex /∈M. It has also been
noted in Lemma 2 that withinM, d ′i (u) < 0 ∀u ∈ L−; sinceu3 is closer tou1 than is theu-parameter of
any other sample withinL−, we must have thatx3 is closer tox1 than these points as well.✷

Lemmas 10 and 11 show thatx3 does indeed lie insideXo, that is,〈x3− x1, x2− x1〉< 0. Thus,x3 is
a candidate to bẽx.

Lemma 10. Leta = x2−x1
‖x2−x1‖ . ForX an r-sample ofC with r � 1

2, we have that‖a− t (x1)‖�
√

2(1− γ ).

Proof. We have shown in Theorem 1 that ifr � 1
2, then‖x2 − x1‖ < θ(x1). Thus,x2 /∈ Θ(x1); using

Lemma 3, this implies that

|〈x2− x1, t (x1)〉|
‖x2− x1‖ = ∣∣〈a, t (x1)〉

∣∣ � γ.

Thus, either〈a, t (x1)〉� γ or 〈a, t (x1)〉�−γ . To show that〈a, t (x1)〉� γ , assume that〈a, t (x1)〉�−γ
and establish a contradiction. Let

Q(u)= |〈fi(u)− x1, t (x1)〉|
‖fi(u)− x1‖ .

ThenQ(u2)= 〈a, t (x1)〉�−γ . Now, it is easy to show that

lim
u→u1: u>u1

Q(u)= 1.

Also, sincefi(·) is continuous, thenQ(·) must be continuous. Thus, by the intermediate value theorem,
∃û ∈ (u1, u2) such thatQ(û) = 0. Using the converse of Lemma 3,Q(û) = 0 ⇒ x̂ = fi(û) ∈ Θ(x1).
Thus, di(û) � θ(x1). However, sinceû ∈ (u1, u2), any u ∈ [û, u2] satisfiesd ′i (u) > 0, since all such
u ∈ L+. Thus,di(u2) > di(û)� θ(x1). This is a contradiction, since we have already established that for
r � 1

2, di(u2) < θ(x1). Thus, we must have that〈a, t (x1)〉� γ .
Finally, ‖a − t (x1)‖2= ‖a‖2+‖t (x1)‖2− 2〈a, t (x1)〉. Using the fact that‖a‖ = ‖t (x1)‖ = 1, and the

above result completes the proof.✷
Lemma 11. If the beam-widthβ � 74◦, then〈x3− x1, x2− x1〉< 0.
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Proof. Let b= x3−x1
‖x3−x1‖ . Since‖x3− x1‖< θ(x1), we may use the reasoning in Lemma 10, applied tox3,

to show that‖b+ t (x1)‖�
√

2(1− γ ). (Note that we must compareb to−t (x1), which accounts for the
plus sign above.) Now, using the triangle inequality note that‖t (x1)− (−t (x1))‖� ‖t (x1)− b‖ + ‖b+
t (x1)‖, so that‖b− t (x1)‖� 2−‖b+ t (x1)‖ (since‖t (x1)‖ = 1) or‖b− t (x1)‖� 2−√2(1− γ ). Now,
again use the triangle inequality to find that‖b− t‖� ‖b− a‖ + ‖a − t‖, so that

‖a − b‖� ‖b− t‖ − ‖a − t‖� 2− 2
√

2(1− γ ).
Finally, note that since‖a‖ = ‖b‖ = 1,

〈a, b〉 = 1− 1

2
‖a − b‖2 �−5+ 4γ + 4

√
2(1− γ ).

Sinceβ � 74◦ ⇒ γ = sin(β) > 0.96, which gives that〈a, b〉<−0.028. ✷
Theorem 2 establishes the fact thatx̃ = x3. When combined with Theorem 1, this establishes the fact

that the algorithm picks out both points correctly, i.e., both points which are adjacent tox1. Finally,
Theorem 3 formalizes this result, to show that the curve generated by the RECONSTRUCTalgorithm is
indeed homeomorphic to the original curve.

Theorem 2. Let a = x2 − x1 andXo = {x ∈ X: 〈a, x − x1〉 < 0}. Then if r � 1
2 , and the beamwidth

β � 49◦, thenx3= argminx∈Xo ‖x − x1‖.

Proof. From Lemma 9, the only samples we need to consider are thosex ∈ L+. It may be that for such
x, we have〈a, x − x1〉 � 0, so that none of thesex belong toXo; in this case, the proof is completed.
However, suppose that this is not the case, and there exists anx ∈ L+ such that〈a, x − x1〉< 0.

Note that〈a, x2 − x1〉 = ‖x2 − x1‖ > 0, and the functionδ(u) = 〈a,fi(u)− x1〉 is continuous; thus,
beforeδ(u) becomes negative, it must pass through 0. Let us therefore examine anx∗ = fi(u∗) such that
x∗ ∈ L+, u∗ > u2, and〈a, x∗ − x1〉 = 0. Defineh= (x∗ − x1)/‖x∗ − x1‖. Then

〈t, h〉 = 1− 1

2
‖t − h‖2,

since‖t‖ = ‖h‖ = 1. Also,

‖t − h‖� ‖a − h‖ − ‖a − t‖.
Further,‖a−h‖2= 2−2〈h, a〉 = 2 (recall that〈h, a〉 = 0 is the definition ofx∗). Also, from Lemma 10,
‖a − t (x1)‖�

√
2(1− γ ). Thus,

‖t − h‖�
√

2−√
2(1− γ ),

which gives that〈t, h〉� 2
√

1− γ − (1− γ ). Usingβ � 49◦ ⇒ γ = sin(β) > 0.754, so that 0< 〈t, h〉<
0.746.

Finally, you can see that|〈t, h〉|< γ , so that from Lemma 3,x∗ ∈Θ(x1). Of course, for anyu� u∗, we
will have‖x − x1‖� θ(x1), sinced ′i (u) > 0 for u ∈ L+. Thus, we are done since‖x3− x1‖� θ(x1). ✷
Theorem 3. If X is an r-sample ofC for r � 1/3, and the beamwidthβ � 74◦, then Ĉ =
RECONSTRUCT(X) is homeomorphic toC.
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Proof. From Theorem 1, we have thatx̂ = x2, wherex̂ = argminx∈X−{x1} ‖x − x1‖; that is, the closest
point tox1 is also adjacent to it. From Theorem 2,x̃ = x3, wherex̃ = argminx∈Xo ‖x − x1‖; that is, the
point which is “on the other side” ofx1 is also adjacent tox1. Thus, we have established that only correct
simplices are added tôC: simplices in which the edges points are adjacent in the underlying curveC.
Now, letg :C→ Ĉ be defined as follows. For any two adjacent pointsxa = fj (ua) andxb = fj (ub), let
g be defined on the portion of the curvefj ([ua, ub]) as follows:

g
(
fj ((1− λ)ua + λub)

)= (1− λ)fj (ua)+ (1− λ)fj (ub)
for eachλ ∈ [0,1]. It is clear thatg is a bijection. Continuity ofg andg−1 are properties which follow
directly from the definition ofg. Thus,C is homeomorphic tôC.

It is interesting to note once again that the condition ofr � 1/3 is precisely the same condition as in
[8], albeit with a completely different definition of local feature size.✷

6. Complexity and experiments

It remains to discuss issues of complexity. Looking at the structure of the pseudocode in Fig. 5, it is
clear that the algorithm is O(N2) for N = |X|. Although this is not quite as good as the O(N logN)
complexity of [3], it is nice that the complexity is independent of the embedding dimension. (In fact, if
the sampling condition is the same as that of [3], the algorithm can be shown to run in O(N logN) in the
case of curves embedded in the plane; see [8].)

The algorithm has been applied in four cases. Unfortunately, it is very difficult to show images of
curves that are embedded in four or higher dimensions; thus, we will have to content ourselves with
experimental results concerning curves embedded in the plane and in space (although, of course, the
algorithm is valid for curves embedded in arbitrary Hilbert Spaces). Figs. 6 and 7 show the samples and
corresponding reconstructions for curves embedded in the plane; Figs. 8 and 9 show results for space.
Note the varying topologies and geometries that are presented.

Note that in Figs. 6 and 8, the curves are not closed, as is supposed in the proof of the algorithm’s
correctness. However, the algorithm is specially modified in such circumstances: the distances

Fig. 6. Curve reconstruction using the RECONSTRUCTalgorithm, for a simple curve embedded in two dimensions. Note that in
this case, the curve has endpoints, so a minor modification to the algorithm is employed; see text.
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Fig. 7. Curve reconstruction for a curve embedded in two dimensions. Note that this curve has more complex geometry and
topology.

Fig. 8. Curve reconstruction for a curve embedded in three dimensions. Note that the curve has endpoints, so a minor
modification to the algorithm is employed; see text.

Fig. 9. Curve reconstruction for a complicated curve embedded in three dimensions.
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d̂ = ‖x − x̂‖ andd̃ = ‖x − x̃‖ are compared. If̃d > αd̂ for some fixed constantα > 1, then the segment
betweenx andx̃ is not included in the reconstruction. A value ofα = 3 worked well in most cases.
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