3 Computational
?ﬁ Geometry
Theory and Applications

ELSEVIER Computational Geometry 23 (2002) 227-241
www.elsevier.com/locate/comgeo

Combinatorial curve reconstruction in Hilbert spaces:
A new sampling theory and an old result revisited

Daniel Freedman

Rensselaer Polytechnic Institute, Department of Computer Science, Troy, NY 12180, USA
Received 13 September 2001; received in revised form 25 April 2002; accepted 10 June 2002
Communicated by K. Mehlhorn

Abstract

The goals of this paper are twofold. The first is to present a new sampling theory for curves, based on a new
notion of local feature size. The properties of this new feature size are investigated, and are compared with the
standard feature size definitions. The second goal is to revisit an existing algorithm for combinatorial curve re-
construction in spaces of arbitrary dimension, the Nearest Neighbour Crust of Dey and Kumar [Proc. ACM-SIAM
Sympos. Discrete Algorithms, 1999, pp. 893-894], and to prove its validity under the new sampling conditions.
Because the new sampling theory can imply less dense sampling, the new proof is, in some cases, stronger thal
that presented in [Proc. ACM-SIAM Sympos. Discrete Algorithms, 1999, pp. 893-894]. Also of interest are the
techniques used to prove the theorem, as they are unlike those used used in the curve reconstruction literature ft(
date.0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The goals of this paper are twofold. The first is to present a new sampling theory for curves, based on a
new notion of local feature size. The properties of this new feature size are investigated, and are comparec
with the standard feature size definitions employed in many papers on combinatorial curve and surface
reconstruction, including [1]. The second goal is to revisit an existing algorithm for combinatorial curve
reconstruction in spaces of arbitrary dimension, the Nearest Neighbour Crust of Dey and Kumar [8], and
to prove its validity under the new sampling conditions. Because the new sampling theory can imply less
dense sampling, the new proof is, in some cases, stronger than that presented in [8]. Also of interest in
their own right are the techniques used to prove the theorems, as they are unlike those used in the curve
reconstruction literature to date.
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The problem of combinatorial curve reconstruction, in the sense of this paper, may be framed as fol-
lows. Given a curve embedded in a Hilbert Space of arbitrary dimensionyaample points from this
curve, is it possible to construct a new curve based only on knowledge of the samples which is topolog-
ically equivalent to the original curve, and is sufficiently close to it? Hidden in the problem statement
are the three principal difficulties that inhere in the problem. First is the combinatorial nature of the
problem: the points arenorganizedthat is, they may come in any order to the user. This fact precludes
any straightforward reasoning about the adjacency relationships between samples. It may be argued tha
some topological and/or geometrical constraints on the curve to be reconstructed may be used to help
alleviate this problem. This, in fact, is not the case; for the second obstacle associated with the problem
of curve reconstruction is that no prior topological or geometrical information is available. Rather, both
the topology and geometry of the underlying curve are assumed to be unknown; all available informa-
tion about the curve is contained in the samples. The final hurdle is that the algorithm must work for
embedding spaces of arbitrary dimension. The algorithm of Dey and Kumar, unlike several of its prede-
cessors (see Section 4), is designed to work not only for curves embedded in the plane, but for curves
living in any embedding space which is a Hilbert Space. Indeed, the embedding space need not even be
finite-dimensional; it may, for example, be the space of function®R).

Of course, such a problem may not be solved without some additional assumptions on the curve
samples. In particular, a common assumption pertains to the fineness with which the curve is sampled.
A standard approach involves defining a local feature gize, which is a function mapping the curve
to real numbers greater than 0. Intuitively, at any given point, this feature size should indicate roughly the
size of the curve’s features at that point. Thus, in relatively flat parts of the cpinwd| be quite high,
while in areas with greater curvature, or which pass close to other parts of the curve, we expgct that
will be much smaller. Given suchg then for O< r < 1, X is said to be am-sampling of a curve if
(@) X c C and (b)Vc € C, 3x € X such that|c — x|| < r¢(c). This notion of sampling is plausible, since
areas which are relatively featureless can be sampled sparsely, while areas with more features must b
sampled relatively more densely. An algorithm for curve reconstruction is usually established given such
a sampling condition, namely, assuming that the samples formsample of the curv€’, andr is less
than some critical sampling parameiér

As a result, the particular definition of the feature sjzplays an important role in both the statement
of the theorem, i.e., under what conditions the algorithm will yield a provably correct reconstruction, as
well as the shape of the proof. In this paper, a new definition of the local feature sidlébe given.

This definition is geometrically plausible, and will be discussed at length in Section 3. It will also be
compared with the standard definition, used, for example, in [3,8]. In Section 4, we briefly review the
Nearest Neighbour Crust of Dey and Kumar. In Section 5, we present the proof of the algorithm’s va-
lidity, using the new definition of feature size; in consequence, the techniques used to prove the result
differ greatly from those in [8]. It may be the case that such methods are of use in proving related results,
such as combinatorial surface and manifold reconstruction. Finally, in Section 6 we show some results
of applying the algorithm, and discuss aspects of complexity.

2. Previouswork

The problem of combinatorial curve reconstruction has been discussed for some time, with early works
focusing on various heuristics [7,11,17]. Algorithms which offer provably correct reconstructions were
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first studied in the case in which sampling was uniform [5,6]. Amenta et al. [3] provided the first provably
correct reconstructions, the crust and fhskeleton, in the case of hon-uniform sampling, using the more
general sampling condition mentioned in Section 1. (Note that the prior work of Melkemi [15] contains
similar results.) Other algorithms use a similar sampling condition, but present modified algorithms: that
of Dey et al. [9] is designed to provide greater self-consistency, while that of Gold and Snoeyink [13]
leads to a more conservative reconstruction. The paper of Dey and Kumar [8], which is discussed in this
paper, generalizes curve reconstruction in a different way, by allowing for the embedding dimension to
be general; all of the other algorithms work only for curves embedded in the plane.

All of the algorithms mentioned thus far are able to reconstruct smooth curves. More recent efforts
have focused on the reconstruction of curves with cusps. Giesen [12] presented the first work which
addresses the problem of cusps; he showed that a global approach, which sought to reconstruct the curv
by finding the TSP tour amongst the samples, would lead to a provably correct reconstruction. Althaus
and Melhorn [1] made this problem tractable by showing that the TSP could be found in polynomial time
in this case. The deficiency of these approaches is that they assume that the curves are simply connecte
using a new algorithm which does not have provable properties, Dey and Wenger [10] achieve good
experimental results for multiply connected non-smooth curves. Finally, there is the somewhat unrelated
“minimal interpolant” algorithm of Petitiean and Boyer [18], which assumes that the underlying curve
itself must be a simplicial complex, thereby leading to a form of self-consistency.

Finally, there exists the related work on combinatorial surface reconstruction. In addition to some of
the work in the field of graphics, such as [14], the computational geometry literature provides several
examples, such as the algorithms of Amenta and Bern [2], and the somewhat simpler algorithm by
Amenta et al. [4].

3. Thesampling theory

Before explaining the new definition of local feature size, we must introduce some notation. The
embedding space 8, a real Hilbert Space. The inner product @ris denoted(-, -) : Z x Z — R, and
the norm is||z|| = (z, z)*/%. The results to be presented, if appropriately modified in minor ways, would
also apply to complex Hilbert Spaces; however, the extra notation tends to obfuscate the results. A curve
C is aC' 1-manifold embedded . As in [3], it is assumed thaf has neither endpoints nor self-
intersections. The samples of the curve are dengtedC, with |X| = N. The curve has: connected
components; théth has arc-lengtld;, and a unit-speed parameterization givenfhyR — Z, wheref;
is Ct and periodic with period.;. Thus,C may be written

C=J{zez: z=fiw.uel0, L1}
i=1
The tangent at a poirton the curve is denotedc), which is equal tof! (1) wherec = f;(u); note that
llz(c)]l = 1. A normal to the curve atis denoted:(c), and is also generally assumed to have unit norm.
A ray between the pointg; andz; is denotedo(z1, z2) and is the vectot, — z;. Let a(zs, z2) be the
angle between two vectotg andz,. Given p, § € Z, interpretp as a point and as a direction; then a
beamis defined by

beantp, 8) ={z € Z: |a(p(p, 2).8)| < B}
whereg is referred to as thbeam-width
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Fig. 1. lllumination. Portions of a curve are illustrated in bold; the normal to the curve is dashed; and the boundary of the beam
is shown in thin solid lines. The poikt is illuminated by the point; the pointsc” andc¢”” are not.

We may now turn to the task of defining the feature size; this definition rests on the concepts of
illumination and its close relativeyisibility. A point c; € C is said to bdlluminated by c; € C if there
exists abeamcy, n(c1)) 3 ;. ¢1 is said to bevisibleto ¢, if ¢; illuminatesc, or ¢, illuminatesc;. Note
that visibility is symmetrici; is visible toc, < ¢, is visible toc;. For an illustration of the concept of
illumination, see Fig. 1. Now, le® be the visibility set,

O(c) ={c € C: 'is visible toc}.
Then we may define thasible distanceat ¢ by

0(c)= min |lc—C|.
€@ (c)

Now, defining
D(c)={c eC: | —cll <)}
leads to our definition dbcal feature sizg
¢(c) = min 0(c)).

c'ed(c)

Before investigating any more formal properties ¢gofc), let us spend some time developing the
intuition for why this quantity respects features. One can imagine, at a particularcpomthe curve,
shining a beam of light which illuminates other parts of the curve; see Fig. 1. The beam, which subtends
an angle g, can be thought of as tethered to the curve asing a hinge which can rotate about the
curve; thus, the beam can shine in any direction which is normal to the curve at the point from which
it emanates. The points which are illuminated by the beams are said to be illuminatetidpking at
things from the opposite vantage point, we may wonder about which points illumina@eombination,
all of these points are said to be visiblectceitherc can shine its beam on one of these points, or one of
these points can shine its beamon

Intuitively, the proximity of visible points te determine how featured this part of the curve is. Fig. 2
demonstrates how the notion of visible distarge), captures features. In Fig. 2(a), a feature near the
point ¢ is shown. This feature has a source which is “locattd.e., it is caused by the curvature of the
curve near. This kind of feature will be captured by the notion of visible distance;] &silluminated by
¢, and thus we have thatc) < ||c — ¢’||. Figs. 2(b) and 2(c) show examples of features whose sources are
not “local” to ¢, but rather are “global’, i.e., are due to completely different parts of the curve. In Fig. 2(b),
the source of the feature is a different part of the same connected component, whereas in Fig. 2(c), the
source is a different connected component. Once again, the relevant feature is illuminatedidbyhus
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(d)

Fig. 2. Examples of visible points, illustrating the concept of visible distance. See accompanying discussion in the text.

the concept of visible distance captures the proximity of this feature. Thus far, all examples have shown
the feature being illuminated by the pointFig. 2(d) shows an example where this doesn’'t happen. If
the notion of visible distance atwere based solely on the points which are illuminated: fhen this
feature would not be captured. However, note thatilluminated by the point’ on the feature; thug;
is visible toc, and the feature is in fact captured by the visible distance. This is the reason that the notion
of visibility is defined symmetrically.

Thus far, we have discussed the intuitive meaning of the visible distdaazeThe question now
arises: why not define the local feature sizé@3$? The answer is that, largely for technical reasons, it is
necessary for the local feature size to be Lipschitz, i.e., it must satisfy

|p(ct) — p(c2)| < Kllex — el

for all pointsc; andc;, on the curve, and soni€ > 0. Whiled does not possess this propegydoes¢ (c)
is found taking the smallest value &¢.) in a small neighbourhood of the curve aroufndnterestingly,
the size of the neighbourhood itself depend® ).

Let us compare some of the properties of the new featuregsizeintroduced in this paper, with
the more common notion of feature size, denaféd, used in [8] (and by many other papers as well).
Note that both this paper, as well as that of Dey and Kumar [8], establish homeomorphic reconstruction
assuming%-sampling. It is thus quite important to know the relative sizeg ahdé&. For example, if it
were the case thgt(c) > ¢ (c) at all points on all curves, then the results established by Dey and Kumar
[8] would be strictly better than those established here, as they would require less dense sampling to
achieve the appropriate reconstruction. What we shall show now is that this is not the case; rather, there
are cases in which(c) > ¢ (c), and there are also cases in whitfr) > £(c). Let us examine each of
these cases in turn.

Focus on the curv€ = {z € R?: |z|| = 1}, i.e., the unit circle in the plane. Clearly, the medial axis
is just the single poinf0, 0). Thus,&(c) = 1 for all pointsc on the curve. Computing(c) is somewhat
more complex; let us begin by examining the set of points which are illuminated by a giveor
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Fig. 3. For a circle, we have thatc) > ¢ (c). Fig. 4. For an oval, we have that0, —1) > £(0, —1). If a > 1,
theng (c) = 2¢(c¢) for most points on the oval.

concreteness, fix = (0, —1). Referring to Fig. 3, we can see that for the visible peintve must have
that

llc—c'll=[(=1,0) = (—sin2y,cos )| =/2(1+cos J).

This function is monotonically decreasing jn and we know that any illuminated point must have
lv| < B, whereg is the beam-width. Thus,

min ||c — || = vV2(1+ cos ).

lyI<p

Due to the circle’s symmetry, it is easy to show that the only points which illuminate those which
are illuminated by. Thus,

0(c) =+/2(1+cosP).

Once again, due to the circle’'s symmetry, we must havesthatis the same for aké, which leads finally

to
¢(c) =+/2(1+ cosB).

In order to compare (c) with £(c), we need to know something more about the beam-wgdth will
turn out that appropriate reconstruction is only provably guaranteedgnitty4°. In this case, we have
that

¢(c) <055

and therefore (¢) > ¢ (c) for all pointsc on the circle.
The situation is quite different for the curve illustrated in Fig. 4. This figure shows an oval, i.e., a curve
defined as

C={zeR% |z1|<a,22=1}U{zeR* |z1] < a,zp=—1]}
UfzeR% lz— @0l <Lzi>alU{zeR?® |z—(—a, 0] <1,z: < —al.

In other words, the oval is defined as two line segments and two semi-ciiciesa parameter which

gives the lengths of the line segments. The medial axis is quite easy to compute, and is just the set
{z € R?: |z1] < a, z2 =0}. Thus, as in the case of the circlgc) = 1 for all pointsc on the oval. Now,

focus on the poiné = (0, —1). If a > 2, then the closest point thatlluminates if the point0, 1). A brief
inspection also shows that there is no point which is closer (@ah which illuminatesc. Thus,

00 =10, - -0 1|=2
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Furthermore, ifa > 4, then all points: within a distance ob(¢) = 2 away from¢ (hamely, the points
¢ = (u, —1) with |u| < 2) will also haved(c) = 2, by the argument used above. Therefore, 3 4, we
have thaip (¢) = 2. In other wordsg (¢) = 2£(¢); the new notion of feature size is twice as big{pas
the standard definition, and therefore would lead to less dense sampling. Inde&lgifite large, i.e.,
the oval is very long and thin, then most pointsn the oval (all except those near the semi-circular caps)
will satisfy ¢ (c) = 25(c).

To summarize, then, there are points on curves for which > ¢ (c), and there are points on curves
for which ¢ (¢) > &(¢). Since this paper shows that the NN-crust algorithm is validﬁfeampling using
the feature sizé (c), we have in some cases improved upon the result of Dey and Kumar [8], which
shows that the algorithm is valid f(%r—sampling using the feature sizéc). Combining the results of [8]
and those of this paper, we have the following. Uét) = maxX{¢(c), £(c)}; then the NN-crust produces
a homeomorphic reconstruction of a cummsing%—sampling with the feature size given By(c). This
is a strict improvement over [8].

4. Thealgorithm

The algorithm, which Dey and Kumar refer to as the “Nearest Neighbour Crust”, is very simple, and
is described in Fig. 5.

The curve is reconstructed as a simplicial complex, i.e., as a polygonal approximation to the underlying
curve. The algorithm therefore tries to find the two sample points which are adjacent to a given sample.
The idea is that one of these points is always the point which is closest to the sample in question. The
second adjacent point is, in some sense, the sample which is “on the other side” of the original. & hus, if
is the direction from the sample to its closest point, the other adjacent point will bevarich satisfies
{(a,x’ — x) < 0; it must lie in the opposite halfspace. Indeed, it is taken to be the closest such point.

Note that this formulation relies on the fact that the cutvis C*. If the curve were merelg®, then at
cusps, the two adjacent points could very well lie in the same direction.

The algorithm proposed is very simple, both to understand and to implement. However, it is quite
another matter to establish the validity of the algorithm, namely to demonstrate that the reconstruction
which it provides is both homeomorphic to the original curve, as well as sufficiently close to it. The next

C = RECONSTRUCTX)
C=0
for eachx € X
X =argminuey_y X" — x|
a=Xx—X
o={x"€X: {a,x' —x) <0}
X =argmin.cy, I|lx" — x|l
{={zeZ: z=(1—Nx+A%, 1 e[0,1]}
(={zeZ z=(1—-Mx+21x, »e[0,1]}
C=Culul
end

>

Fig. 5. The reconstruction algorithm.
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section addresses these issues in a formal context, and shows under what conditonssRRUCT
leads to a proper reconstruction of the original curve.

5. Proof of thealgorithm

For concreteness, let us focus on one particular sample ppiatX. Let x, and xz be adjacent to
x1. Furthermore, without loss of generality, let, — x1|| < |lx3 — x1||. Assume that;, x,, andxz lie
on theith connected component 6f. Let the parameters correspondingxfobe u,; assume, without
loss of generality, thats < u1 < u,. (The orientation of the parameterization can always be flipped to
accommodate this result.) Also, &t(u) = || f;(u) — x1]|.

In what is to follow, the main goal will be to demonstrate tiiat x, and x = x3 if sampling is
sufficiently dense; i.e., that the two points chosen IBCBNSTRUCTare adjacent ta;. Lemmas 1
and 2 give a particular partition of the points on tib component of the curve. This partition has
the three useful properties outlined in Lemma 2, properties which will be utilized throughout the
proof.

Lemmal Ju*,u suchthat@ us <u™ <u~ <ui+ L; and(b) d/(u*) =d/(u") =0.

Proof. The derivatived; may be calculated as
_ (@), fiw) —x)
I1fi () = xall

which exists everywhere but at= u;. Since f; is C?, d/ is everywhere continuous, exceptiat u;.
Now, it can be shown that

lim d(u)=-1, lim d'u) =1

u—ui+Li: u<ui+L; U—uyl U>ug

d;(u)

Sinced; is continuous, by the intermediate value theorem there exists at least e, u1 + L;) such
thatd/(w) = 0. Letu™ be the smallest such, and letu~ be the largest such; then by definition, we have
thatd/(u™) =d/(u™) =0, and thai; <u™ <u~ <ui+ L;. (Note thatu™ = u~ is a possibility, if there

is exactly one suclw.) O

Lemma 2. Using the definition ofi* and u~ from Lemmal, the set(uq, u; + L;) can be partitioned
into {£*+, 9, £7}, whereft = (ug,u™), M=[u",u"],and L™ = (u~,u~ + L;). This partition has the
following properties

(1) uelt=dw) >0;
(2 ue £ =d(u) <0
(3) u* =argmin,.y d; (u) is well-defined, and satisfiesk(u*) = 0.

Proof. Properties (1) and (2) follow directly from the definitionswof andu~, see Lemma 1. To prove
property (3), note that is a compact set, and thdt(x) is continuous with respect @ (since C is
CY); this implies thatu* is well-defined, see for example [16]. #* € (u*,u™), then d/(u*)=0; a
global minimum which is in the interior of a set must also be a local minimum?* K u™, we have
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a boundary solution, for which* is no longer necessarily a local minimum; however, by the definition
of u™, d/(u*) = 0 (see Lemma 1). A similar argument applies in the case othereby completing the
proof. O

Lemmas 3 and 4 establish the fact that all local minima ofAfte) functions must be visible t®;.

Lemma 3. Let 8 be the beam-width, and let

Ve, d) = I(c/—c,t(C))I‘
llc" —cl|

If y =sin(B), then
Ve, dhzy and y(,o)z2y & J¢0().

Proof. If ¢ ¢ ®(c), thenc does not illuminate’, andc¢’ does not illuminate:. Look at the first case.
For any normah(c), it must be thata (¢’ — ¢, n(c))| > B. In particular, this must be true for the normal
which lies in the plane defined by placing the tails of the vectgrs and¢’ — ¢ at the pointc. This
implies thata (¢’ — ¢, t(c))| < 5 — B. Finally,

Yo d)
1@l

since C has a unit-speed parameterization. This in turn yields th@t ¢’) > coSz/2 — 8) = sin(B).
The argument for the second case is exactly analogous.

cos(a(c’ —c,1(c)) =

v (c,c)

Lemma4. If u* is a local minimum of/; () for any j, andc* = f;(u*) thenc* € @ (xy).

Proof. If u* is alocal minimum ofZ; (), we must have thai}(u*) =0, i.e.,
(i), fiw) —x1)
| f(u*) — xall
Noting thatz (¢*) = f]f(u*), and using the converse of Lemma 3 completes the proaf.

Lemma 5 shows that distance fromto any point on theg'th component on the curve, i, must be
greater than the visible distanééx,). Furthermore, the distance from to any point which lies in the
part of theith component of the curve given by(9t), must also be greater than the visible distance.

Lemmab. LetMt = £;(£H) U f;(£7) U {x1}. Then ifc ¢ M, |lc — x1]| = 6 (x1).

Proof. First, examine the case wheris on theith component of”. In this case¢ ¢ M = ¢ € f; (N).
From Lemma 2, we know thadu* € 91 such thatd;(u*) < d;(u) Yu € 9 and d/(u*) = 0. Thus,
llc — x1]| = d; (u*). From Lemma 4,

di(u*) =0 = fi(u") € O(x1) = di(u") >0(x).

Thus,[lc — x1|| > 6(x1).
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Now consider the case wheris on the jth component o€ for j #i. Letu* be the global minimum
of d;(-); then|lc — x1]| > d;(u*). Becausel; is bothC* and periodic, the global minimum must also be
a local minimum. Thusf; («*) € ®(x1). Using the same argument as above, we may then conclude that
lc —xill 260(x1). O

The essential result given in Lemma 5 can now be used to show that the closests@onglenust lie
in theith component, either irf; (£1) or in f;(£7). Further, it can be shown that= x,. These results
are given in Lemmas 6-8, and Theorem 1.

Lemma 6. Jx;, € C such that||x; — x12]| = ||x2 — x12||. x12 lies on the same component asand xa,
between them.

Proof. Let

S(u)= | fi(w) — fiwo)| — | fiw) — fiu2)].

Since f; is continuous, so i8. Letn = || fi(u2) — fi(u1)|; then§(uz) = n, while §(u1) = —n. By the
intermediate value theorefu, € (u1, uz) such thats(u12) = 0; then if x1o = fi(u12), ||lx1 — x12 =
llx2 — x12||. Note thatxi, is nota sample, i.ex12 ¢ X. The notationx;, is merely used as a mnemonic
for the reader to remembej,’s property. O

Lemma?7. If X is anr-sampling ofC for anyr < 1, ||x1 — x2|| < 2r¢(x12).

Proof. To establish this result, use Lemmas 1, 2, 4, and 5, substituting the fundions= || f; (u) —
x12|l (rather than|| f;(u) — x1]|). In this case, all points on the curve which do not belon@tax:,)
satisfy ||c — x12| = 0(x12) > ¢(x12). SinceX is anr-sampling ofC, there must exist € X such that
lx12 — x|l < r¢(x12); by the previous statement, such amcannot be outsid®i(x1,) as long as < 1.
That is, there must exist an e Mi(x12) which is closer tax;, than are any of the samples which lie
outside oft(x12). Now, from Lemma 24/(u) > 0 Yu € £*(x12), andd;(u) < 0 Vu € £ (x12). As

a result, anyx in M(x12) which minimizesd; must also minimizgu — u1,|. There are two possible
candidatesy; andx,; and ||x; — x12|| = ||x2 — x12]|. Since bothx; and x, are closest tory,, by the
r-sampling condition we must have thfit; — x12|| < r¢p(x12) for i = 1,2. Finally, by the triangle
inequality, [ x1 — x2ll < [lx1 — x12ll + llx12 — x2ll < 2rép(x12). O

Lemma 8. If X is anr-sample ofC with r < 1, theng (x12) < 0(x1).

Proof. ¢(c) =mingco ) 0(c’), where

?(c)={c €C: | —cll <)}
Thus,¢ (x12) < 6(c) for all ¢ such thatjc — x12|| < 6(x12). Butin proving Lemma 7, we established that
lx1 — x12ll < rdp(x12) < P(x12) <O(x12). Thus,p(x10) <O(x1). O

Theorem 1. If X is anr-sample ofC for r < % then|xo — xq|| < ||lx — x1|| Vx € X — {x1, x2}.

Proof. There are two cases to consider:e 2t and x ¢ 9. For the former case, we have noted
from Lemma 2,d/(u) > 0 Yu € £*(x1), andd;(u) < 0 Vu € £ (x1). As a result, any in M which
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minimizes d; must also minimizelu — u1|. There are two possible candidates, and x3; and by
assumption|x; — x| < [lxg — x3||, SOx2 = argmin, oy, |x — x1||. Now, consider the case¢ 2. such
anx was shown to satisfyfx — x1|| > 0(x;) (see Lemma 5). However, from Lemma 7, we know that
lx1 — x2|| < 2rép(x12) < 2rf(x1), where the latter follows from Lemma 8. However, sincg % then

2r <1, and thug|x; — x2|| < 6(x1). This completes the proof.0

Lemma 9 shows that; is closer tax; than all points except possibly those which lie insjgeg™).
This allows future results to concentrate on the regigit™).

Lemma. If r < % x3is closer tox; thanallx ¢ Mand allx € £-.

Proof. Using most of the previous lemmata, but focusingxgrinstead ofx, (and substitutinge;3 for
x12) shows that|xs — x1]| < 6(x1). Thus,x3 is closer tox; than is any sample ¢ 91. It has also been
noted in Lemma 2 that withift, d/(u) < 0 Vu € £7; sinceus is closer tou; than is theu-parameter of
any other sample withil£~, we must have that; is closer tax; than these points as well.0

Lemmas 10 and 11 show the does indeed lie insid& ,, that is,(x3 — x1, x» — x1) < 0. Thus,xz is
a candidate to bé.

Lemmal0. Leta = -“2==L, For X anr-sample ofC withr < % we have thafja — ¢ (x1) || < /21— p).

[le2—x1]l "

Proof. We have shown in Theorem 1 thatrif< % then|x, — x1] < 6(x1). Thus,x, ¢ ©(x1); using
Lemma 3, this implies that
[{(x2 — x1, 1(x1))]
llx2 — xall
Thus, eitheka, t(x1)) > y or {(a, t(x1)) < —y. To show thata, ¢ (x1)) > y, assume thafu, 1 (x1)) < —y
and establish a contradiction. Let
I Sfiu) = xa, 1(x0))|

= [{a, 1(x))| > y.

O =" —
ThenQ(uy) = {(a, t(x1)) < —y. Now, it is easy to show that
lim O() =1

U—>u1l U>uq

Also, sincef;(-) is continuous, them(-) must be continuous. Thus, by the intermediate value theorem,
i € (uq, up) such thatQ (i) = 0. Using the converse of Lemma 8,(i) =0 = x = f;(u) € O(x1).
Thus, d; (it) > 6(x1). However, sincet € (u1, up), any u < [ii, up] satisfiesd(u) > 0, since all such
u € £*. Thus,d; (up) > d; (i) > 0(x1). This is a contradiction, since we have already established that for
r <1, d;(up) <60(xy). Thus, we must have that, 7 (x1)) > .

Finally, [|a — t(x0)||? = llal® + 1t (x0)|I?> — 2(a, t(x1)). Using the fact thalla|| = ||(x1)|| = 1, and the
above result completes the proof

Lemma 11. If the beam-widthB > 74°, then(xz — x1, x — x1) <O.
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Proof. Letb = ”2:2” . Since||lxs — x1|| < 6(x1), we may use the reasoning in Lemma 10, appliecsto
to show that|s + 1 (x1)|| < +/2(1— ). (Note that we must compateto — (x1), which accounts for the
plus sign above.) Now, using the triangle inequality note flnét;) — (—z (x))|| < |lt(x1) — b|| + |16 +
t(x1)|l, sothatllb —r(x1)|| = 2—[[b+1(x1) || (sincelz(x1)[| = 1) or |b —t(x1)|| = 2—/2(1 —y). Now,
again use the triangle inequality to find thiat— ¢|| < ||b — al| + |la — £]|, SO that

la=0bI 26—t —lla—tll>22—-2y2(1—y).
Finally, note that sinc@a| = ||p|| = 1,

1
(@,b) =1=Slla - b|I>? < —5+4y +4/2(1—y).
Sincep > 74 = y =sin(B) > 0.96, which gives thata, b) < —0.028. O

Theorem 2 establishes the fact tlvat x3. When combined with Theorem 1, this establishes the fact
that the algorithm picks out both points correctly, i.e., both points which are adjacent Enally,
Theorem 3 formalizes this result, to show that the curve generated byetheNsTRUCTalgorithm is
indeed homeomorphic to the original curve.

Theorem 2. Leta =x, —x; and X, = {x € X: {a,x — x1) < 0}. Then ifr < % and the beamwidth
B = 49, thenxs = argmin x [lx — x|

Proof. From Lemma 9, the only samples we need to consider are thase*. It may be that for such
x, we have(a, x — x1) > 0, so that none of these belong toX,; in this case, the proof is completed.
However, suppose that this is not the case, and there existg &1 such thatla, x — x;) < 0.

Note that(a, xo — x1) = ||x2 — x1|| > 0, and the functio (1) = {a, f; (#) — x1) iS continuous; thus,
befores (1) becomes negative, it must pass through 0. Let us therefore examirfe=ayi («*) such that
x* € &%, u* > up, and(a, x* — x1) = 0. Defineh = (x* — x1)/||x* — x1||. Then

1
t,hy=1— =t —h|?,
(t,h) 2|| l
sincelz|| = ||k|| = 1. Also,

lt = hll = lla—hll —lla—t]l.

Further,||a — h||> = 2—2(h, a) = 2 (recall that(k, a) = 0 is the definition ofc*). Also, from Lemma 10,
la —t(x0)ll < +/2(1 —y). Thus,

It —h| >~v2-/2(1—y),

which gives thatt, h) <2/1—y — (1—y). UsingB > 49 = y =sin(8) > 0.754, so that G (¢, h) <
0.746.

Finally, you can see thatz, #)| < y, so that from Lemma 3;* € ® (x;). Of course, for any > u*, we
will have ||x — x1]| > 6(x1), sinced!(u) > 0 foru € £*. Thus, we are done sindas — x1|| <6(x1). O

Theorem 3. If X is an r-sample ofC for r < 1/3, and the beamwidthd > 74°, then C =
RECONSTRUCTX) is homeomorphic t@.
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Proof. From Theorem 1, we have that= x,, wherex = argmi@ex_{x1} lx — x1]; that is, the closest
point tox; is also adjacent to it. From Theorem®X= x3, wherex = argmi@exu lx — x1]; that is, the
point which is “on the other side” of; is also adjacent t®;. Thus, we have established that only correct
simplices are added t6: simplices in which the edges points are adjacent in the underlying rve
Now, letg:C — C be defined as follows. For any two adjacent points= f;(u,) andx, = fj(u), let

g be defined on the portion of the curye([u,, u;]) as follows:

g(fi((A = Mg+ rup)) = (L= 21) f(ua) + (L= 1) f;(up)
for eachi € [0, 1]. It is clear thatg is a bijection. Continuity of and g~ are properties which follow
directly from the definition og. Thus,C is homeomorphic t@.
It is interesting to note once again that the conditiom &f 1/3 is precisely the same condition as in
[8], albeit with a completely different definition of local feature sizen

6. Complexity and experiments

It remains to discuss issues of complexity. Looking at the structure of the pseudocode in Fig. 5, it is
clear that the algorithm is @Q/?) for N = |X|. Although this is not quite as good as th& XDog N)
complexity of [3], it is nice that the complexity is independent of the embedding dimension. (In fact, if
the sampling condition is the same as that of [3], the algorithm can be shown to r@wiln@w) in the
case of curves embedded in the plane; see [8].)

The algorithm has been applied in four cases. Unfortunately, it is very difficult to show images of
curves that are embedded in four or higher dimensions; thus, we will have to content ourselves with
experimental results concerning curves embedded in the plane and in space (although, of course, the
algorithm is valid for curves embedded in arbitrary Hilbert Spaces). Figs. 6 and 7 show the samples and
corresponding reconstructions for curves embedded in the plane; Figs. 8 and 9 show results for space
Note the varying topologies and geometries that are presented.

Note that in Figs. 6 and 8, the curves are not closed, as is supposed in the proof of the algorithm’s
correctness. However, the algorithm is specially modified in such circumstances: the distances

Fig. 6. Curve reconstruction using the BoNsTRUCTalgorithm, for a simple curve embedded in two dimensions. Note that in
this case, the curve has endpoints, so a minor modification to the algorithm is employed; see text.
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N =)

Fig. 7. Curve reconstruction for a curve embedded in two dimensions. Note that this curve has more complex geometry and
topology.
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Fig. 8. Curve reconstruction for a curve embedded in three dimensions. Note that the curve has endpoints, so a minor
modification to the algorithm is employed; see text.
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Fig. 9. Curve reconstruction for a complicated curve embedded in three dimensions.
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d=|lx — %|| andd = ||x — %|| are compared. I > ad for some fixed constant > 1, then the segment
betweenr andx is not included in the reconstruction. A valuewf= 3 worked well in most cases.
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