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Abstract

Illumination changes are a ubiquitous problem in com-
puter vision. They present a challenge in many applications,
including tracking: for example, an object may move in and
out of a shadow. We present a new tracking algorithm which
is insensitive to illumination changes, while at the same
time using all of the available photometric information. The
algorithm is based on computing an illumination-invariant
optical flow field; the computation is made robust by using
a graph cuts formulation. Experimentally, the new tech-
nique is shown to quite reliable in both synthetic and real
sequences, dealing with a variety of illumination changes
that cause problems for density based trackers.

Keywords: tracking, illumination invariance, optical flow,
graph cuts.

1 Introduction

Illumination changes are a ubiquitous phenomenon in
many computer vision applications. Figure 5 shows two
nearby frames in a video sequence: as the individual walks
out of the shadow, his appearance changes quite drastically.
The ability to cope with illumination changes is therefore an
important aspect of many vision systems. In this paper, we
will examine the problem of illumination invariant tracking.

A traditional method for dealing with illumination
changes in tracking algorithm has been to use illumination
invariant features, such as edges. In principle, the entire
set of contour-tracking algorithms are invariant to illumi-
nation. (In practice, of course, edge-detection is somewhat
dependent on illumination conditions.) However, the com-
puter vision community has recently witnessed the devel-
opment of several excellent tracking methodologies that are
based primarily on tracking photometric, i.e. illumination-
dependent, variables (such as intensity, colour, or texture).
In particular, the performance of the mean-shift tracker
[9, 10] has been shown to be outstanding in many impor-
tant applications, outperforming many of the contour-based
approaches. Unfortunately, because of the reliance of such
methods on photometric variables, they are inherently sen-
sitive to illumination changes. A desirable objective, there-
fore, is to design a tracker which retains one of the main

benefits of the mean-shift tracker, namely its use of the
available photometric information, while at the same time
achieving a robustness to illumination changes.

In this paper, we use an approach to tracking based on
optical flow. In principle, optical flow should be a natural
starting point for tracking algorithms; an accurate compu-
tation of the flow field contains nearly all of the motion
information that can be gleaned from a pair of consecu-
tive images, and is therefore an ideal primitive for track-
ing. In general, however, most recent tracking algorithms
have tended to eschew optical flow (with a few notable ex-
ceptions, e.g. [12]); the reason is that the optical flow com-
putation isnot believed to be completely accurate or reli-
able. To make matters worse, optical flow seems to depend
inherently on stable illumination; after all, we cannot de-
rive equations based on the assumption of “brightness con-
stancy” if the brightness is not, in fact, constant. Thus, using
optical flow for tracking faces the two problems of unrelia-
bility of the flow computation, and dependence on constant
illumination. Our challenge is to design an algorithm for
flow computation which is robust, and which is illumina-
tion invariant.

The major theoretical contribution of this paper is an al-
gorithm for “illumination-invariant optical flow.” The op-
tical flow field is found by optimizing an energy function
based on a graph cuts formulation. The flow computa-
tion can be made robust by using a non-convex smoothness
term; this fact is well known from prior graph cut based
methods for optical flow, such as [4]. However, such ap-
proaches (like all approaches to optical flow) depend on
brightness constancy, and hence are illumination dependent.
Our technique, by contrast, assumes that illumination can
be transformed between frames. This transformation is not
explicitly computed; instead, it is approximated by looking
at corresponding pairs of pixels in both images. Specifi-
cally, if two pixels in the first image have similar intensi-
ties, we expect that (in most cases) the corresponding pair
in the second image will have similar intensities; and the
same hold true for dissimilar pairs. This simple notion al-
lows one to compute flow fields even when the illumination
changes significantly.

The outline of the remainder of the paper is as follows.
In Section 2, we describe related work. Section 3 sets out
the relevant energy function, and describes how the optical
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flow computation can be used for tracking. Section 4 shows
results on synthetic and real video sequences, and compares
these results with mean-shift tracking. Section 5 concludes.

2 Related Work

There are three areas of computer vision which bear on
the work presented in this paper: graph cuts, optical flow,
and tracking. We briefly review the most relevant literature
in each case.

The use of graph cuts to solve energy minimization prob-
lems with label sets of size greater than two was introduced
in [5, 4], in which the concepts ofα-expansions andα-β
swaps were introduced. A deeper treatment of the prob-
lem of which functions can be minimized via graph cut
techniques was given in [20], which introduced the concept
of regularity. “Visual correspondence” problems, including
optical flow, were treated in [4, 19, 18]; in particular, [18]
bears a relation to the work in this paper. [25] uses graph
cut techniques for extracting motion layers. Graph cut tech-
niques have been used for other purposes as well, including
multi-camera stereo, clustering, and segmentation.

The optical flow literature is vast, so no attempt will be
made to summarize it here; for a comprehensive review
of the literature up to 1998, please see [1, 14], and refer-
ences therein. The main findings of these studies are that
the best performing optical flow techniques are the algo-
rithms of Lucas and Kanade [21] and Fleet and Jepson [13];
algorithms which rely on a global smoothness term do not
perform as well. Of course, the graph cuts formulations are
not reviewed in these papers, as this literature emerged after
1999; the non-convex smoothness terms which are allowed
for graph cuts formulations (see above references) make for
much more effective global smoothness terms. Other rel-
evant papers in optical flow include the work of Irani on
low-rank constraints [16], and the subsequent nonlinear ex-
tensions [24, 23]. All optical flow approaches mentioned
are based on the notion of brightness constancy.

The tracking literature is very large, so we focus on two
aspects of it. First, there is the family of mean-shift track-
ers [9, 8, 10], arguably the most popular trackers available
today. These algorithms, which operate through a density-
matching operation, get excellent results for a variety of se-
quences, and do so in real-time. Second, we mention the
class of illumination-invariant trackers. Linear subspace il-
lumination models were used in [15] to actually model the
illumination changes. Illumination was also explicitly mod-
eled in [6] for the purposes of head-tracking. A transformed
colour space was used in [11], which is theoretically in-
variant to a number of different illumination changes, while
[22] employs an MRF approach. There has also been some
work in the area of shadow removal for tracking, such as
[17]. Finally, the field of contour tracking relies on edges,
which are illumination invariants; examples of popular con-
tour trackers include [2, 7].

3 Theoretical Contributions

In this section, we introduce the main theoretical con-
tribution of this work: a method for computing illumina-
tion invariant optical flow. This notion itself is somewhat
counter-intuitive, as optical flow typically relies heavily
on constancy of illumination (i.e. “brightness constancy”).
However, as we have already argued, the reliable compu-
tation of a flow-field which is robust even in the presence
of illumination changes, is a linchpin of our approach to
tracking. The reason the approach is promising is because
optical flow makes use of all of the available photometric
information. Contrast this, for example, with contour track-
ers: while these trackers are in principle insensitive to il-
lumination changes, they throw away much of the valuable
photometric information in the scene, and thereby lose ro-
bustness.

We will begin by reviewing traditional algorithms which
compute ordinary (illumination dependent) optical flow
based on a graph cuts formulation. We then go on to dis-
cuss the main idea of the section: the new energy function
which captures the notion of illumination invariant optical
flow. Subsequently, we review the algorithms for optimiz-
ing the new energy function, i.e. the graph cut techniques
themselves. Finally, we discuss the important issue of how
to use the optical flow computation in order to track.

3.1 Traditional Optical Flow via Graph Cuts

In this section, we describe the traditional method of
casting optical flow in a graph cuts formulation, which was
first introduced in [5, 4]. Optical flow is an example of a “vi-
sual correspondence” problem, a problem of relating pixels
in one image to those in another image. Similar problems
crop up in stereo, though the energy functions may be dif-
ferent.

Let us denote the images at timet andt + 1 by It and
It+1, respectively. A pixel is given byp, the set of pixels is
P, and the set of pairs of neighbouring pixels isN ⊂ P×P.
Let the flow vector for the pixelp in imageIt be given byδp;
that is, the pixelp in imageIt flows to the positionp + δp
in imageIt+1. In this case, we may formulate the energy
function as

E({δp}p∈P) = λ
∑
p∈P

ψσ1(|It+1(p+ δp)− It(p)|)

+ (1− λ)
∑

(p,q)∈N

ψσ2(‖δp − δq‖)

whereψσ is a robustifying function, designed to deal with
outliers, such as:

ψσ(z) =

{
z z < σ

σ otherwise.
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(Note that ifσ = ∞, thenψσ is no longer robustifying;
while if the δp’s are quantized, then choosingσ sufficiently
small makesψσ into a Potts function.)

The first term ensures brightness constancy: a pixel in
the imageIt flows to a pixel inIt+1 with close to the same
intensity. This is the key idea behind optical flow. The
second term is a regularizing term: this ensures that the
flow-field is relatively smooth. In the experimental papers
[1, 14], it was noted that optical flow algorithms with global
smoothness terms generally did not perform as well as those
without, such as Lucas-Kanade [21] and Fleet-Jepson [13].
However, unlike the smoothness terms examined in these
papers, the current smoothness term is anon-convexterm,
which does not excessively penalize pairs of neighbouring
vectors which are dissimilar. This effectively allows for dis-
continuities in the flow-field that would be oversmoothed if
a traditional quadratic smoothness term were used.

We postpone a discussion of how to optimize such a
function until Section 3.3. For the moment, we simply note
that good experimental results were attained on a few pairs
of images in [4].

3.2 Illumination Invariant Optical Flow

Our goal is to find an energy function which computes
the optical flow, but does so independent of whether the
illumination has changed. Obviously, one can no longer
use an approach based on brightness constancy; a pixel will
not necessarily map to a pixel with similar intensity, as that
pixel may be illuminated differently in the second image.
Imagine, for example, an individual walking into a shadow
cast by a building; a formerly light-coloured pixel on the
individual’s shirt may now appear considerably darker.

Suppose, to begin with, that there is a global illumination
change across the scene. Let the range of the photometric
variable of interest (grayscale intensity, colour, or even tex-
ture) be given byI. Then the illumination change is de-
scribed by a function

f : I → I

Combining this with the notion of optical flow gives the fol-
lowing relationship, which replaces brightness constancy:

It+1(p+ δp) = f(It(p)) (1)

Of course, we don’t have access to the functionf ; however,
knowing that there is a functional relationship allows us to
recast equation (1) as

It(p) close toIt(q) ⇒ It+1(p+ δp) close toIt+1(q + δq)
It(p) far from It(q) ⇒ It+1(p+ δp) far from It+1(q + δq)

We have not been very explicit about the meanings of “close
to” or “far from;” these qualitative ideas will be replaced by
quantitative notions shortly, in formulating the energy func-
tion. Note that in recasting in this fashion, we have assumed

something aboutf . While the “close to” condition is fairly
generic, following directly from the idea of continuity of
f , the “far from” condition could be violated easily iff is
many-to-one. However, we have found that in practice the
“far from” condition is not only satisfied for most illumina-
tion changes, but its utilization is critical to the success of
the algorithm.

Before writing out the problem formally, let us first dis-
cuss the case of a non-global illumination change. This
is likely to occur in many practical settings: as an object
moves through a shadow, the part of the object which is in
the shadow has a different functionf than the part of the
object which is still out of the shadow. Thus, we expect that
the above qualitative relations should be replaced by

if p is nearq then

It(p) close toIt(q) ⇒ It+1(p+ δp) close toIt+1(q + δq)

and similarly for the second case, in whichIt(p) is far from
It(q). In other words, thef relation is only defined locally.
Of course, the above relationship will not hold where there
is sharp changes in illumination, such as the case wherep
is on one side of a shadow andq is on the other side of the
shadow. This difficulty will be taken care of by the energy
function formulation.

Using these ideas, we may formulate the energy func-
tion. To begin with, let us quantize both imagesIt and
It+1; we denote the quantized versions asÎt and Ît+1, re-
spectively. This allows us to make more precise the notions
of “close to” and “far from” described in the previous para-
graph: It(p) is close toIt(q) if Ît(p) = Ît(q), andIt(p)
is far from It(q) if Ît(p) 6= Ît(q). Thus, there is a fairly
sharp split between pixels with similar and dissimilar inten-
sities; however, we will find that this causes no problems
in practice. It is important to note that the two imagesIt
and It+1 may very well be quantized differently; indeed,
this is the likely outcome if there is a sharp illumination
change between the frames. For example, suppose that the
sun recedes behind a cloud, leading to an imageIt+1 with
a smaller dynamic range than its predecessorIt; this It+1

will be quantized more finely thanIt.
Now, introduce the following notation:

Θ[x1, x2] =

{
1 if x1 = x2,

−1 otherwise.

Then the energy function can be written

E = (1− λ)
∑

(p,q)∈N

ψσ(‖δp − δq‖) + (2)

λ
∑

(p,q)∈M

{1−Θ[Ît(p), Ît(q)]Θ[Ît+1(p+ δp), Ît+1(q + δq)]}

To understand the energy function, let us examine the
data term more carefully. The term

1−Θ[Ît(p), Ît(q)]Θ[Ît+1(p+ δp), Ît+1(q + δq)]
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is 0 when either

• Ît(p) = Ît(q) andÎt+1(p+ δp) = Ît+1(q + δq) or

• Ît(p) 6= Ît(q) andÎt+1(p+ δp) 6= Ît+1(q + δq)

In other words, we incur no penalty when the relationship
(“close to” or “far from”) between the pixelsp andq in the
imageIt is the same as the relationship between the pixels
they map to, i.e.p+δp andq+δq, in the imageIt+1. On the
other hand, if the relationship between pairs of pixels in the
two images is opposite, then we incur a penalty of 2. As a
result, in minimizing the energy, we will seek to ensure that
pairs of pixels in the first image are related in the same way
as the pairs they map to in the second image, in as many
cases as possible.

Note that the data term is summed overM, which is
a neighbourhood relation on the set of pixelsP, i.e.M ⊂
P×P. However, it may be the case thatM is different from
the neighbourhood relationN . In particular,N will usually
contain only the nearest neighbours (an 8-neighbourhood in
our case), as this is sufficient to ensure that the flow-field is
smooth. By contrast,M encapsulates the extent to which
the illumination change is global; ifM = N , then the illu-
mination change is assumed to be completely local, whereas
if M = P × P, then the change is completely global. Any
intermediateM is possible.

Unfortunately, the energy function in (2) cannot be min-
imized by graph cut algorithms. The reason is the the data
term, which usually depends only on single variable terms,
now depends on pairs of variables. In other words, whereas
the data term can normally be writtenDp(δp), it now has
the formDp,q(δp, δq). As a result, the regularity conditions
[20] which the energy function must satisfy in order to ap-
ply the expansion or swap algorithms, must apply not only
to the smoothness term (which in this case does satisfy the
regularity condition), but also to the data term. It is easy
to show that the data term will not, in general, satisfy this
condition.

As a result, we emend the function in (2) slightly:

E = (1− λ)
∑

(p,q)∈N

ψσ(‖δp − δq‖) + (3)

λ
∑

(p,q)∈M

{1−Θ[Ît(p), Ît(q)]Θ[Ît+1(p+ δp), Ît+1(q + δp)]}

where the only change we have made is to replaceq + δq
by q + δp. This approximation pretends that the pixelq is
mapped toq + δp, rather thanq + δq; if the neighbourhood
M is local (e.g.M = N ) and the flow is smooth, then
this will be a very good approximation in most places. At
flow discontinuities, it will not be a good approximation,
but due to the robust nature of both the data and smoothness
terms (both ignore outliers), this should not substantially
affect the flow computation. From the mathematical point
of view, the data term now only depends on a single term

(i.e.δp); as a result, expansion or swap moves on the energy
function now satisfy the regularity conditions of [20], and
we can therefore apply these graph cut methods.

It is worth noting that occlusions can be incorporated
into the energy function in (3) using methods similar to
those explored in [4] (i.e. using the occlusion as an extra la-
bel). None of the results of Section 4 use this term, although
one example tracks through a small occlusion; however, we
have found that inclusion of this term does lead to success-
ful tracking through reasonable sized occlusions in practice.
We do not say anything more about occlusions at this time.

3.3 Optimization Techniques

In order to optimize the energy function described in (3),
we may use methods based on graph cuts. As we have men-
tioned, the function satisfies the conditions necessary for
these methods to work: the pairwise (i.e. smoothness) term
is a metric inδp, δq. As a result, we can apply either of
the usual techniques,α-expansions orα-β swaps. In all of
the experiments, we have used theα-expansion methodol-
ogy; therefore, we briefly describe this technique here. For
greater details, the reader is referred to [4].

The idea behind the graph cuts paradigm is to convert an
energy function with a label set of arbitrary size to an energy
function with a binary label set, by allowing a certain large
“move” of the labels. When this is achieved, a multiway
cut problem become an ordinary cut problem, which can
be solved in polynomial time via max-flow algorithms. In
particular, the conversion which is done for the case ofα-
expansions is to allow moves of the following kind:

∀p, δ′p = δp or α

for a fixedα. The binary label set which is induced is there-
fore “remain the same” (= 0), or “change toα” (= 1). The
graph cut algorithm optimally determines which pixelsp
should change their values toα, and which should retain
their old values, in polynomial time. In particular, we use
the algorithm described in [3], which is very fast in practice.

3.4 From Optical Flow to Tracking

We would like to use the computed optical flow in order
to track. There are a variety of ways of doing this, including
those mentioned in [12]. Here we make use of the simplest
possible method. Namely, we characterize the object as a
collection of pixelsO. In order to propagate this collection
of pixels forward in time, we simply propagate each of them
individually according to their optical flows:

Ot+1 = {p+ δp : p ∈ Ot}

Because of the simplicity of this idea, it has several draw-
backs. The main disadvantage is the fact that the object it-
self is not characterized in the normal fashion, as a compact
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connected subset of the plane. As a result, we are not guar-
anteed that it be connected; in principle, it can break up into
several small components within a few frames. However,
given a reasonably strong smoothness constraint, this is not
observed in practice. Indeed, in all of the examples we show
in Section 4, the object remains a connected component of
the plane. In future work, we plan to use explicit constraints
to ensure that this constraint is met.

4 Results

In this section, we demonstrate the efficacy of our al-
gorithm in dealing with illumination changes. Several se-
quences are used, ranging from a completely synthetic
scene to real scenes taken with a handheld DVI video cam-
era. The video sequences were originally captured in color,
but for simplicity we have converted them to grayscale, typ-
ically by choosing an individual color channel. We compare
the results of the optical flow based technique with that of
the mean shift algorithm.

The following parameter values were used for the illu-
mination invariant tracker.λ, the smoothness-data tradeoff,
was set in the range0.1 − 0.25. σ, the scale of the robust
function used in the smoothness term, was set to1.5. The
two neighbourhood relations,M andN , were both set to be
8-neighbourhoods. The quantization of any image was per-
formed by dividing the dynamic range into 8 equally-spaced
levels. The label set included flow vectors of up to 6 pixels
in both vertical and horizontal directions. The result of us-
ing this large label-set is that the algorithm is not real-time,
taking about a minute per frame; while this is problematic,
we have in mind several strategies to drastically reduce the
time of computation (see Section 5).

Two versions of the mean shift tracker were used. The
first version obtains the target distribution from a single
hand picked region. This distribution is static throughout
the sequence. The second version uses the initial target dis-
tribution described above, but then updates the target dis-
tribution from the tracking region after the algorithm has
converged on a frame. For clarity we denote this second
versionadaptive mean shift tracking. In the sections below,
we present the results from the version of mean shift which
worked best in each sequence. The scenes we present do
not show large changes in object size, so the mean shift al-
gorithm was run with a fixed scale.

4.1 Results on Synthetic Sequences

A completely synthetic sequence was generated; results
are shown in Figure 1. The textured square is Gaussian
random noise with mean 0 and standard deviation 20. The
background of the image is zero (constant). Objects (includ-
ing the background) on the right hand side of an image have
had their intensity increased by 50 to simulate a sharp illu-
mination boundary. Once the textured square crosses fully

into the right hand side of the image its distribution is mean
50 and standard deviation 20. Figure 1 contains the results
of a mean shift tracker (top row) and the illumination invari-
ant tracker (bottom row) on the synthetic scene. Note that
the mean shift tracker locks onto the illumination bound-
ary. The square is well tracked by the illumination invariant
tracker, however, and suffers minimal disturbance around
the illumination boundary.

4.2 Results on Semi-Synthetic Sequences

Two semi-synthetic scenes were created by taking real
video from a handheld camera and corrupting them with an
additive sinusoidal intensity pattern. In the first sequence,
the sinusoid was stationary with amplitude 50 and period 32
pixels. In the second scene a similar sinusoid translates left
at 6 pixels per frame.

Figure 2 contains the results of the adaptive mean shift
tracker (top row) and the illumination invariant tracker (bot-
tom row) run on the stationary sinusoid sequence. The
adaptive mean shift tracker begins to wander about 17
frames into the sequence and it locks onto the background
a few frames later. The illumination invariant technique
tracks the person throughout the sequence. A small amount
of wandering occurs around frame 30, but the tracker has
recovered well by frame 40.

Figure 3 shows the results of the adaptive mean shift
tracker (top row) and the illumination invariant technique
(bottom row) on the translating sinusoid sequence. The
adaptive mean shift tracker loses the person early (less than
5 frames) into the sequence and instead locks onto the mov-
ing sinusoid. The illumination invariant tracker maintains
good localization of the person throughout the tracking se-
quence.

4.3 Results on Real Sequences

Finally, we present results on two real sequences. The
first sequence contains a person walking through two strong
shadows. The second sequence shows a car driving be-
hind a lamppost; this sequence contains minor illumination
changes, which may be difficult to see from the images.

Figure 4 and Figure 5 contain the results of the adap-
tive mean shift tracker and the illumination invariant tracker,
respectively, on the shadow sequence. The adaptive mean
shift tracker begins to lock onto the darker background (and
fails to recover) as the subject moves into an area of strong
lighting. The illumination invariant tracker successfully fol-
lows the object of interest out of and into strong shadows.

Figure 6 contains the results of the adaptive mean shift
tracker (top row) and the illumination invariant tracker (bot-
tom row) on the car sequence. The illumination invariant
tracker shows good resilience in the face of the partially oc-
cluding lamppost.
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Figure 1. Frames 1, 5, 12, 16, 17, 30, and 36 from synthetic sequence. The textured square is Gaussian random noise with mean
0 and standard deviation 20. The right hand side has an intensity increase of 50. Top row: Results of using a mean shift tracker.
Bottom row: Results of using the illumination invariant tracker.

Figure 2. Frames 1, 10, 17, 20, 30, and 40 from the semi-synthetic sequence. The corrupting sinusoid is additive, with amplitude
50. Top row: Around frame 17, the adaptive mean shift tracker starts to wander. Bottom row: The illumination invariant technique
tracks the person well for the whole sequence.

Figure 3. Top row: Frames 1, 5, 10. The adaptive mean shift tracker has almost completely lost the object by frame 5 and by
frame 10 it has locked onto the moving sinusoidal pattern. Bottom row: Frames 1, 5, 10, 20, 30, and 40. The illumination invariant
tracker maintains a secure focus on the target object throughout the sequence.
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Figure 4. Results of using the adaptive mean shift tracker for a sequence with strong shadows. The figure shows frames 1, 10,
20, 30, 50, and 70. The tracker begins to lock onto the darker background (and fails to recover) as the subject moves into an area of
strong lighting.

Figure 5. Results of using the illumination invariant tracker for a sequence with strong shadows. The figure shows frames 1, 10,
20, 30, 50, 70, 100, 150, and 210. The illumination invariant tracker successfully follows the object of interest out of and into strong
shadows.

5 Conclusions and Directions for Future Re-
search

The main contribution of this work has been the devel-
opment of an optical flow algorithm which is invariant to
illumination changes. This algorithm, which is posed as the
optimization of an energy function, is solved via graph cut
techniques. A straightforward pixel propagation method is
used to convert the optical flow field into a tracking algo-
rithm. The value of the algorithm has been demonstrated
on a number of scenes with complex illumination changes,
scenes which are challenging for state-of-the-art trackers.

There are two main directions for future research. First,
we shall investigate a more sophisticated use of optical flow
in tracking. We view the optical flow algorithm developed
here as a low-level primitive; that is, the flow field can be
used as the basis for a number of higher level algorithms,
including tracking. In particular, when moving from flow to
tracking, we want to ensure that the object’s geometry re-

mains reasonable; we also may wish to incorporate some
simple dynamical assumptions. Both objectives may be
achieved by a more sophisticated treatment of the flow field,
once it has been computed. Our second direction for re-
search is to find faster algorithms for computing the flow.
Currently, the method based on alpha expansions can be
costly, given the size of the label set. We are interested in
investigating a coarse-to-fine approach, in which the coarse-
ness is based not only on the true scale of the image, but also
on the size of the label set. Such a method will lead to an
algorithm which may be considerably faster.
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Figure 6. Frames 1, 2, 5, 10, 20, and 30 of a sequence with an occluder. Top row: The adaptive mean shift tracker wanders
significantly. Bottom row: The illumination invariant tracker formulation maintains a lock on the car while it passes behind the
occluding lamppost.
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