lllumination-Invariant Tracking via Graph Cuts

Daniel Freedman and Matthew W. Turek
Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract benefits of the mean-shift tracker, namely its use of the
available photometric information, while at the same time
lllumination changes are a ubiquitous problem in com- achieving a robustness to illumination changes.
puter vision. They present a challenge in many applications, In this paper, we use an approach to tracking based on
including tracking: for example, an object may move in and optical flow. In principle, optical flow should be a natural
out of a shadow. We present a new tracking algorithm which starting point for tracking algorithms; an accurate compu-
is insensitive to illumination changes, while at the same tation of the flow field contains nearly all of the motion
time using all of the available photometric information. The information that can be gleaned from a pair of consecu-
algorithm is based on computing an illumination-invariant tive images, and is therefore an ideal primitive for track-
optical flow field; the computation is made robust by using ing. In general, however, most recent tracking algorithms
a graph cuts formulation. Experimentally, the new tech- have tended to eschew optical flow (with a few notable ex-
nigue is shown to quite reliable in both synthetic and real ceptions, e.g. [12]); the reason is that the optical flow com-
sequences, dealing with a variety of illumination changes putation isnot believed to be completely accurate or reli-
that cause problems for density based trackers. able. To make matters worse, optical flow seems to depend
inherently on stable illumination; after all, we cannot de-
Keywords: tracking, illumination invariance, optical flow, rive equations based on the assumption of “brightness con-

graph cuts. stancy” if the brightness is not, in fact, constant. Thus, using
optical flow for tracking faces the two problems of unrelia-
1 Introduction bility of the flow computation, and dependence on constant

illumination. Our challenge is to design an algorithm for

lllumination changes are a ubiquitous phenomenon in f!ow'com.putation which is robust, and which is illumina-
many computer vision applications. Figure 5 shows two tON Invariant.
nearby frames in a video sequence: as the individual walks ~ The major theoretical contribution of this paper is an al-
out of the shadow, his appearance changes quite drasticallygorithm for “illumination-invariant optical flow.” The op-
The ability to cope with illumination changes is therefore an tical flow field is found by optimizing an energy function
important aspect of many vision systems. In this paper, webased on a graph cuts formulation. The flow computa-
will examine the problem of illumination invariant tracking. tion can be made robust by using a non-convex smoothness

A traditional method for dealing with illumination term; this fact is well known from prior graph cut based
changes in tracking algorithm has been to use illumination methods for optical flow, such as [4]. However, such ap-
invariant features, such as edges. In principle, the entireproaches (like all approaches to optical flow) depend on
set of contour-tracking algorithms are invariant to illumi- brightness constancy, and hence are illumination dependent.
nation. (In practice, of course, edge-detection is somewhatOur technique, by contrast, assumes that illumination can
dependent on illumination conditions.) However, the com- be transformed between frames. This transformation is not
puter vision community has recently witnessed the devel- explicitly computed; instead, it is approximated by looking
opment of several excellent tracking methodologies that areat corresponding pairs of pixels in both images. Specifi-
based primarily on tracking photometric, i.e. illumination- cally, if two pixels in the first image have similar intensi-
dependent, variables (such as intensity, colour, or texture) ties, we expect that (in most cases) the corresponding pair
In particular, the performance of the mean-shift tracker in the second image will have similar intensities; and the
[9, 10] has been shown to be outstanding in many impor- Same hold true for dissimilar pairs. This simple notion al-
tant applications, outperforming many of the contour-based lows one to compute flow fields even when the illumination
approaches. Unfortunately, because of the reliance of suctthanges significantly.
methods on photometric variables, they are inherently sen- The outline of the remainder of the paper is as follows.
sitive to illumination changes. A desirable objective, there- In Section 2, we describe related work. Section 3 sets out
fore, is to design a tracker which retains one of the main the relevant energy function, and describes how the optical



flow computation can be used for tracking. Section 4 shows3 Theoretical Contributions
results on synthetic and real video sequences, and compares
these results with mean-shift tracking. Section 5 concludes. |, this section. we introduce the main theoretical con-

tribution of this work: a method for computing illumina-
2 Related Work tion invariant optical flow. This notion itself is somewhat
counter-intuitive, as optical flow typically relies heavily

There are three areas of computer vision which bear onon constancy of illumination (i.e. “brightness constancy”).
the work presented in this paper: graph cuts, optical flow, However, as we have already argued, the reliable compu-
and tracking. We briefly review the most relevant literature tation of a flow-field which is robust even in the presence
in each case. of illumination changes, is a linchpin of our approach to

The use of graph cuts to solve energy minimization prob- tracking. The reason the approach is promising is because
lems with label sets of size greater than two was introducedoptical flow makes use of all of the available photometric
in [5, 4], in which the concepts af-expansions and-/3 information. Contrast this, for example, with contour track-
swaps were introduced. A deeper treatment of the prob-ers: while these trackers are in principle insensitive to il-
lem of which functions can be minimized via graph cut lumination changes, they throw away much of the valuable
techniques was given in [20], which introduced the concept photometric information in the scene, and thereby lose ro-
of regularity. “Visual correspondence” problems, including bustness.
optical flow, were treated in [4, 19, 18]; in particular, [18] ~ We will begin by reviewing traditional algorithms which
bears a relation to the work in this paper. [25] uses graphcompute ordinary (illumination dependent) optical flow
cut techniques for extracting motion layers. Graph cut tech-based on a graph cuts formulation. We then go on to dis-
niques have been used for other purposes as well, includingcuss the main idea of the section: the new energy function
multi-camera stereo, clustering, and segmentation. which captures the notion of illumination invariant optical

The optical flow literature is vast, so no attempt will be flow. Subsequently, we review the algorithms for optimiz-
made to summarize it here; for a comprehensive reviewing the new energy function, i.e. the graph cut techniques
of the literature up to 1998, please see [1, 14], and refer-themselves. Finally, we discuss the important issue of how
ences therein. The main findings of these studies are thato use the optical flow computation in order to track.
the best performing optical flow techniques are the algo-
rithms of Lucas and Kanade [21] and Fleet and Jepson [13];3.1  Traditional Optical Flow via Graph Cuts
algorithms which rely on a global smoothness term do not
perform as well. Of course, the graph cuts formulations are |, this section, we describe the traditional method of
not reviewed in these papers, as this Ilteratur(_a emerged aﬂeEasting optical flow in a graph cuts formulation, which was
1999; the non-convex smoothness terms which are alloweds; st introduced in [5, 4]. Optical flow is an example of a “vi-
for graph cuts forrr_]ulauons (see above references) make forg correspondence” problem, a problem of relating pixels
much more effective global smoothness terms. Other rel-;, one image to those in another image. Similar problems

evant papers in .optical flow include the work of Irani ON crop up in stereo, though the energy functions may be dif-
low-rank constraints [16], and the subsequent nonlinear ex-forant.

tensions [24, 23]. All optical flow approaches mentioned | o ;s denote the images at timand¢ + 1 by I, and

are based on the notion of brightness constancy. I,,1, respectively. A pixel is given by, the set of pixels is
The tracl_qng_hterature is very Iarge, so we focu_s on two P, and the set of pairs of neighbouring pixels\isc P x P.

aspects of it. First, there is the family of mean-shift tr_ack- Let the flow vector for the pixel in imagel be given by, ;

ers [9, 8, 10], arguably the most popular trackers available ¢ is, the pixep in imagel, flows to the positionp + o,

today..These algorithms, which operate through a density-;, imagel;.. In this case, we may formulate the energy
matching operation, get excellent results for a variety of se- ¢, 1tion as

guences, and do so in real-time. Second, we mention the
class of illumination-invariant trackers. Linear subspace il- E({s - T 45— 1
lumination models were used in [15] to actually model the (pdrer) =22 s (e (p+3;) ~ o))

P
illumination changes. lllumination was also explicitly mod- re
eled in [6] for the purposes of head-tracking. A transformed F (=N > Yo, (l16, — 54l)
colour space was used in [11], which is theoretically in- (P.O)EN

variant to a number of different illumination changes, while ] o ) ) )
[22] employs an MRF approach. There has also been Somé/vhe_rewa is a robustifying function, designed to deal with
work in the area of shadow removal for tracking, such as Outliers, such as:

[17]. Finally, the field of contour tracking relies on edges,
" (z) . {Z z< 0

o otherwise

which are illumination invariants; examples of popular con-
tour trackers include [2, 7].



(Note that ifc = oo, thent, is no longer robustifying;  something abouf. While the “close to” condition is fairly
while if the 6,,’s are quantized, then choosiagsufficiently generic, following directly from the idea of continuity of
small makes),, into a Potts function.) f, the “far from” condition could be violated easily ffis
The first term ensures brightness constancy: a pixel inmany-to-one. However, we have found that in practice the
the imagel; flows to a pixel inl;;, with close to the same  “far from” condition is not only satisfied for most illumina-
intensity. This is the key idea behind optical flow. The tion changes, but its utilization is critical to the success of
second term is a regularizing term: this ensures that thethe algorithm.
flow-field is relatively smooth. In the experimental papers  Before writing out the problem formally, let us first dis-
[1, 14], it was noted that optical flow algorithms with global cuss the case of a non-global illumination change. This
smoothness terms generally did not perform as well as thosas likely to occur in many practical settings: as an object
without, such as Lucas-Kanade [21] and Fleet-Jepson [13].moves through a shadow, the part of the object which is in
However, unlike the smoothness terms examined in thesethe shadow has a different functighthan the part of the
papers, the current smoothness term i®a-convexerm, object which is still out of the shadow. Thus, we expect that
which does not excessively penalize pairs of neighbouring the above qualitative relations should be replaced by
vectors which are dissimilar. This effectively allows for dis-
continuities in the flow-field that would be oversmoothed if
a traditional quadratic smoothness term were used. I,(p) close tol;(q) = I;41(p + d,) close toly1(q + d,)

We postpone a discussion of how to optimize such & gnq similarly for the second case, in whikffp) is far from
function until Section 3.3. For the moment, we simply note I,(q). In other words, thef relation is only defined locally.
that good experimental results were attained on a few pairsof course, the above relationship will not hold where there

if pis nearq then

of images in [4]. is sharp changes in illumination, such as the case where
o ) . is on one side of a shadow ands on the other side of the
3.2 lllumination Invariant Optical Flow shadow. This difficulty will be taken care of by the energy

function formulation.

Our goal is to find an energy function which computes  Using these ideas, we may formulate the energy func-
the optical flow, but does so independent of whether thetion. To begin with, let us quantize both imagésand
illumination has changed. vaiously, one can no Ipnger_ I,+1; we denote the quantized versionsfaandftﬂ, re-
use an approach based on brightness constancy; a pixel Wilkpectively. This allows us to make more precise the notions
not necessarily map to a pixel with similar intensity, as that o «cjose to” and “far from” described in the previous para-
pixel may be illuminated differently in the second image. graph: I,(p) is close tol,(q) if ff(p) _ ft(q). and I, (p)
Imagine, for gxgmple, an individual walking intQ a shadow is far frdm L(q) if ft(p) ) ft(q): Thus, there is a fairly
f:ads't 'kc)jy all, bu;:dmg, a formerly Ilght-col'(éure(g)lplgel kon the sharp split between pixels with similar and dissimilar inten-
Individual's shirt may now appear considerably darker. sities; however, we will find that this causes no problems

Suppose, to begin with, that there is a global illumination in practice. It is important to note that the two images
change across the scene. Let the range of the photometri%ndl rr{ay very well be quantized differently: indeed
variable of_interest (grayscale i_nten_sity,_colour, or even tex- this i?tlhe likely outcome if there is a sharp iIIu,minatior;
tsucrr(iegelijebgl\;efr:”t])é%c.mThen the illumination change is de- change between the frames. For example, suppose that the

y sun recedes behind a cloud, leading to an image with

f:I—7T a smaller dynamic range than its predecedsgpthis 1;. 1
will be quantized more finely thah.
Combining this with the notion of optical flow gives the fol- Now, introduce the following notation:
lowing relationship, which replaces brightness constancy:
o o 1 if 1 = T2,
Iip1(p+6p) = f(Le(p)) @ 1, @] = {—1 otherwise

Of course, we don't have access to the funciohowever,  Then the energy function can be written
knowing that there is a functional relationship allows us to
recast equation (1) as E=(1-)) > ¢l — &l + 2

Q) EN
I;(p) close tol;(q) = Iiy1(p+ 0p) close tol; 11 (g + dq) (b:)

L(p) far fromI;(q) = Ip+1(p + 6,) far from L1 (¢ + &) )‘( )ZM{l = O[L(p), 1e(q)] OlLe1(p + 6p), Le1(q + 04)]}
p,q)€

We have not been very explicit about the meanings of “close

to” or “far from;” these qualitative ideas will be replaced by da

guantitative notions shortly, in formulating the energy func- A R A .

tion. Note that in recasting in this fashion, we have assumed 1 — O[;(p), I;(¢)] ©[lt+1(p + 0p), L1+1(q + 04)]

To understand the energy function, let us examine the
ta term more carefully. The term



is 0 when either (i.e.4,); as aresult, expansion or swap moves on the energy
. . . . function now satisfy the regularity conditions of [20], and
o Ii(p) = Ii(q) andli1(p + 0p) = Liya(g +dy) OF we can therefore apply these graph cut methods.

~ 2 » ~ It is worth noting that occlusions can be incorporated
o 1i(p) # Ii(q) andlipa(p +0p) # li1a(q+ dg) into the energy function in (3) using methods similar to

In other words, we incur no penalty when the relationship those explored in [4] (i.e. using the occlusion as an extra la-
(“close to” or “far from”) between the pixels andq in the bel). None of the results of Section 4 use this term, although
imagel, is the same as the relationship between the pixelsone example tracks through a small occlusion; however, we
they map to, i.ep-+4, andq+d,, in the imagel; ;. On the have found that inclusion of this term does lead to success-
other hand, if the relationship between pairs of pixels in the ful tracking through reasonable sized occlusions in practice.
two images is opposite, then we incur a penalty of 2. As a We do not say anything more about occlusions at this time.
result, in minimizing the energy, we will seek to ensure that

pairs of pixels in the first image are related in the same way 3.3 Optimization Techniques

as the pairs they map to in the second image, in as many

cases as possible. In order to optimize the energy function described in (3),
Note that the data term is summed ovet, which is we may use methods based on graph cuts. As we have men-
a neighbourhood relation on the set of pixglsi.e. M C tioned, the function satisfies the conditions necessary for
P xP. However, it may be the case that is different from these methods to work: the pairwise (i.e. smoothness) term
the neighbourhood relatiok’”. In particular,V will usually is a metric ind,,d,. As a result, we can apply either of

contain only the nearest neighbours (an 8-neighbourhood inthe usual techniques;-expansions on-3 swaps. In all of
our case), as this is sufficient to ensure that the flow-field isthe experiments, we have used th@xpansion methodol-
smooth. By contrastM encapsulates the extent to which ogy; therefore, we briefly describe this technique here. For
the illumination change is global; i#1 = A/, then the illu- greater details, the reader is referred to [4].
mination change is assumed to be completely local, whereas The idea behind the graph cuts paradigm is to convert an
if M =P x P, then the change is completely global. Any energy function with a label set of arbitrary size to an energy
intermediateM is possible. function with a binary label set, by allowing a certain large

Unfortunately, the energy function in (2) cannot be min- “move” of the labels. When this is achieved, a multiway
imized by graph cut algorithms. The reason is the the datacut problem become an ordinary cut problem, which can
term, which usually depends only on single variable terms, be solved in polynomial time via max-flow algorithms. In
now depends on pairs of variables. In other words, whereasparticular, the conversion which is done for the case-of
the data term can normally be writtdn,(5,), it now has  expansions is to allow moves of the following kind:
the formD,, ;(5,,d,). As aresult, the regularity conditions
[20] which the energy function must satisfy in order to ap- vp, 5; =0dpOra
ply the expansion or swap algorithms, must apply not only
to the smoothness term (which in this case does satisfy th
regularity condition), but also to the data term. It is easy
to show that the data term will not, in general, satisfy this
condition.

As a result, we emend the function in (2) slightly:

E=(1-X) Y 4o(ld, =&l + ®)

(P, 9)EN

A DY {1 =O[L(p), L)) O[Ty (p + 6p), Tega(q + 5p)} We would like to use the computed optical flow in order
(p,a)EM to track. There are a variety of ways of doing this, including
those mentioned in [12]. Here we make use of the simplest
possible method. Namely, we characterize the object as a
collection of pixelsO. In order to propagate this collection
of pixels forward in time, we simply propagate each of them

individually according to their optical flows:

efor afixeda. The binary label set which is induced is there-
fore “remain the same™¢ 0), or “change tax” (= 1). The
graph cut algorithm optimally determines which pixels
should change their values tg and which should retain
their old values, in polynomial time. In particular, we use
the algorithm described in [3], which is very fast in practice.

3.4 From Optical Flow to Tracking

where the only change we have made is to replaged,

by ¢ + d,. This approximation pretends that the pixels
mapped tay + J,,, rather thary + d,; if the neighbourhood
M is local (e.g.M = N) and the flow is smooth, then
this will be a very good approximation in most places. At
flow discontinuities, it will not be a good approximation, O ={p+0,:pc O}

but due to the robust nature of both the data and smoothness

terms (both ignore outliers), this should not substantially = Because of the simplicity of this idea, it has several draw-
affect the flow computation. From the mathematical point backs. The main disadvantage is the fact that the object it-
of view, the data term now only depends on a single term self is not characterized in the normal fashion, as a compact



connected subset of the plane. As a result, we are not guarinto the right hand side of the image its distribution is mean
anteed that it be connected; in principle, it can break up into 50 and standard deviation 20. Figure 1 contains the results
several small components within a few frames. However, of a mean shift tracker (top row) and the illumination invari-
given a reasonably strong smoothness constraint, this is noaint tracker (bottom row) on the synthetic scene. Note that
observed in practice. Indeed, in all of the examples we showthe mean shift tracker locks onto the illumination bound-
in Section 4, the object remains a connected component ofary. The square is well tracked by the illumination invariant
the plane. In future work, we plan to use explicit constraints tracker, however, and suffers minimal disturbance around
to ensure that this constraint is met. the illumination boundary.

4 Results 4.2 Results on Semi-Synthetic Sequences

In this section, we demonstrate the efficacy of our al-  Two semi-synthetic scenes were created by taking real
gorithm in dealing with illumination changes. Several se- video from a handheld camera and corrupting them with an
quences are used, ranglng_from a Comp|ete|y.Synthet'Cadditive sinusoidal intensity pattern. In the first sequence,
scene to real scenes taken with a handheld DVI video cam-the sinusoid was stationary with amplitude 50 and period 32
era. The video sequences were originally captured in color,pixels. In the second scene a similar sinusoid translates left
but for simplicity we have converted them to grayscale, typ- gt 6 pixels per frame.
ically by choosing an !nd|V|duaI color Chann.el. We compare  Figure 2 contains the results of the adaptive mean shift
the results of the oppcal flow based technique with that of {,5cker (top row) and the illumination invariant tracker (bot-
the mean shift algorithm. _ tom row) run on the stationary sinusoid sequence. The

_The following parameter values were used for the illu- aqaptive mean shift tracker begins to wander about 17
mination invariant tracker), the smoothness-data tradeoff, fames into the sequence and it locks onto the background
was set in the range.1 — 0.25. o, the scale of the robust 5 few frames later. The illumination invariant technique
function used in the smoothness term, was sdto The  tracks the person throughout the sequence. A small amount
two neighbourhood relationd/ and\V, were both settobe  of wandering occurs around frame 30, but the tracker has
8-neighbourhoods. The quantization of any image was per-recovered well by frame 40.
formed by dividing the dynamic range into 8 equally-spaced  figyre 3 shows the results of the adaptive mean shift
levels. The label set included flow vectors of up to 6 pixels (4cker (top row) and the illumination invariant technique
in both vertical and horizontal directions. The result of us- (bottom row) on the translating sinusoid sequence. The
ing this large label-set is that the algorithm is not real-time, 4qantive mean shift tracker loses the person early (less than
taking about a minute per frame; while this is problematic, g frames) into the sequence and instead locks onto the mov-
we have in mind several strategies to drastically reduce thejng sinusoid. The illumination invariant tracker maintains

time of computation (see Section 5). good localization of the person throughout the tracking se-
Two versions of the mean shift tracker were used. The quence.

first version obtains the target distribution from a single
hand picked region. This distribution is static throughout

the sequence. The second version uses the initial target dis#-3 Results on Real Sequences

tribution described above, but then updates the target dis-

tribution from the tracking region after the algorithm has Finally, we present results on two real sequences. The
converged on a frame. For clarity we denote this secondfirst sequence contains a person walking through two strong
versionadaptive mean shift trackingn the sections below, shadows. The second sequence shows a car driving be-
we present the results from the version of mean shift which hind a lamppost; this sequence contains minor illumination
worked best in each sequence. The scenes we present dehanges, which may be difficult to see from the images.

not show large changes in object size, so the mean shift al- Figure 4 and Figure 5 contain the results of the adap-

gorithm was run with a fixed scale. tive mean shift tracker and the illumination invariant tracker,
respectively, on the shadow sequence. The adaptive mean
4.1 Results on Synthetic Sequences shift tracker begins to lock onto the darker background (and

fails to recover) as the subject moves into an area of strong

A completely synthetic sequence was generated; resultdighting. The illumination invariant tracker successfully fol-
are shown in Figure 1. The textured square is Gaussianlows the object of interest out of and into strong shadows.
random noise with mean 0 and standard deviation 20. The Figure 6 contains the results of the adaptive mean shift
background of the image is zero (constant). Objects (includ-tracker (top row) and the illumination invariant tracker (bot-
ing the background) on the right hand side of an image havetom row) on the car sequence. The illumination invariant
had their intensity increased by 50 to simulate a sharp illu- tracker shows good resilience in the face of the partially oc-
mination boundary. Once the textured square crosses fullycluding lamppost.



Figure 1. Frames 1, 5, 12, 16, 17, 30, and 36 from synthetic sequence. The textured square is Gaussian random noise with mean

0 and standard deviation 20. The right hand side has an intensity increase of 50. Top row: Results of using a mean shift tracker.
Bottom row: Results of using the illumination invariant tracker.

} | | -
Figure 2. Frames 1, 10, 17, 20, 30, and 40 from the semi-synthetic sequence. The corrupting sinusoid is additive, with amplitude

50. Top row: Around frame 17, the adaptive mean shift tracker starts to wander. Bottom row: The illumination invariant technique
tracks the person well for the whole sequence.

Figure 3. Top row: Frames 1, 5, 10. The adaptive mean shift tracker has almost completely lost the object by frame 5 and by
frame 10 it has locked onto the moving sinusoidal pattern. Bottom row: Frames 1, 5, 10, 20, 30, and 40. The illumination invariant
tracker maintains a secure focus on the target object throughout the sequence.
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Figure 4. Results of using the adaptive mean shift tracker for a sequence with strong shadows. The figure shows frames 1, 10,
20, 30, 50, and 70. The tracker begins to lock onto the darker background (and fails to recover) as the subject moves into an area of

strong lighting.

Figure 5. Results of using the illumination invariant tracker for a sequence with strong shadows. The figure shows frames 1, 10,
20, 30, 50, 70, 100, 150, and 210. The illumination invariant tracker successfully follows the object of interest out of and into strong

shadows.

5 Conclusions and Directions for Future Re-  mains reasonable; we also may wish to incorporate some
search simple dynamical assumptions. Both objectives may be

achieved by a more sophisticated treatment of the flow field,
The main contribution of this work has been the devel- °"°€ it .has b'een computed.' Our second dirgction for re-

opment of an optical flow algorithm which is invariant to search is to find faster algorithms for computmg the flow.

illumination changes. This algorithm, which is posed as the Currently, the me'ghod based on alpha expansions can _be

optimization of an energy function, is solved via graph cut .costly,_ given the size of the label set. We are interested in

techniques. A straightforward pixel propagation method is mves'qgatmg a coarse-to-fine approach, in Wh'.Ch the coarse-

used to convert the optical flow field into a tracking algo- NESSIS b_ased notonly on the true scale of the image, but also

rithm. The value of the algorithm has been demonstrated°" th_e- Size O.f the label set. SUCh a method will lead to an

on a number of scenes with complex illumination changes, algorithm which may be considerably faster.

scenes which are challenging for state-of-the-art trackers.
There are two main directions for future research. First,

we shall investigate a more sophisticated use of optical flow ACknowledgments

in tracking. We view the optical flow algorithm developed

here as a low-level primitive; that is, the flow field can be

used as the basis for a number of higher level algorithms, This research was supported by the U.S. Army Intelli-

including tracking. In particular, when moving from flowto gence and Security Command under contract W911W4-F-

tracking, we want to ensure that the object's geometry re-04-0131.



Figure 6. Frames 1, 2, 5, 10, 20, and 30 of a sequence with an occluder. Top row: The adaptive mean shift tracker wanders
significantly. Bottom row: The illumination invariant tracker formulation maintains a lock on the car while it passes behind the
occluding lamppost.
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