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Abstract

A new methodor tracking contours of moving objectsin
clutteris presentedFor a givenobject,a modelof its con-
toursis learnedfromtraining datain theform of a subsedf
contourspace Greatercompleity is addedto the contour
modelby analyzingrigid and non-rigid transformationf
contoussepaately. In thecourseof tracking, multiplecon-
tours may be observeddue to the presenceof extraneous
edgesin the form of clutter; the learnedmodelguidesthe
algorithmin picking out the correct one The algorithm,
which is posedas a solutionto a minimizationproblem,is
madeefiicient by the useof several iterative schemes.Re-
sultsapplyingthe proposedalgorithmto the tracking of a
flexing finger andto a conversingindividual’s lips are pre-
sented.

1. Problem Moti vation and Review

This work addressethe trackingof moving contoursin
a video-stream. Specifically given a sequencef images
in which a known objectof interestis in motion, the goal
is to track the objects silhouetteacrosstime-varying im-
ages. Applicationsaboundin medicine(automatecanaly-
sisof humanorganperformance[l]), surwillance[9], and
audio-visuakpeechrecognitionfor noisyernvironmentg5].
In this paper a new contourtracker, the “subset-trackr,” is
proposedbhasedon aratherdifferentphilosophythanthose
of the existing trackers. Before presentingthe new algo-
rithm, it is worth reviewing the existing approaches.

The deformabletemplateapproach11] minimizes,for
eachframe,an enegy functionwhich is specificto the ge-
ometryof thetracked object. Elasticsnales[8] minimizea
more generalenegy function, which hastermsrepresent-
ing elasticand tensile enegy to ensurethat the snale is
smoothandanimage-dependemérmthatpusheghesnale
towardsthe featureof interest. The Kalmantracker [3] re-
quiresa learnedlinear stochastiadynamicalmodelwhich

describesheevolution of thecontourto betracked. Assum-
ing thatthe obsenation of the contourhasbeencorrupted
by Gaussiamoise,the conditionaldensityof the contour
givenall pastobsenationsmay be found, andthenusedto
estimatethe contourposition. The condensatiottracker [4]
alsoassumesa dynamicalmodeldescribingcontourmotion
is known andthatimpreciseobsenationsare made. How-
ever, boththedynamicalystemandtheobsenationprocess
maybecompletelygenerabndthe conditionaldensitymay
be propagatedorward in time using the numericaltech-
nigue known asthe “condensation’method. This density
maythenbeusedfor estimatingthe currentcontour

A principal problem of the deformabletemplate ap-
proachis thatfor ary givenapplication hand-craftings re-
quired;thatis, if it is desiredto track the motion of lips, a
specificenegy functionthatis appropriateor lips mustbe
designedThesnale methoddoesnot suffer from this prob-
lem; snaleswill in principal find the edgesof ary object
whoseoutlinesarea continuouslosedcurve. However, the
methodis too generalin the sensethatits modesof detec-
tion arenottunedto the motion of ary particularobject,so
thatit is not particularly efficient. Furthermore both de-
formabletemplatesandelasticsnalessuffer from problems
of slawnessin trackingcontoursthroughmultiplesimages.
The Kalmantracker hastheright level of generalityin that
it neednot be hand-craftedor any specificapplicationand
adynamicalsystenfor therelevantclassof contourscanbe
learned.Furthermorethe proces®f finding obsenationsis
fast, so that the whole algorithmis much quicker than ei-
therof the above techniquesHowever, the Kalmantracker
ignoresabasicproblemin tracking:the presencef clutter.
Clutter cancomefrom detectededgeswhich areeitherex-
traneougo the object,or intrinsicto it. In eithercasethere
are often multiple edges,andthereis no one obsenation;
rather thereare a multiplicity of obsered contours. This
problemis addressedy the condensatiortracker, which
is designedspecificallyto dealwith clutter However, this
tracker hastwo shortcomings.First, it requiresa dynami-
cal modelof the objectbeingtracked. Thisis problematic,



asin mary casegnultiple motionsmay be possiblefor the
sameobject (for example,a finger may flex, translate,or
rotate),andin practicethis multiplicity can be difficult to
model. Second the condensationracker postulatesa par
ticular form for the clutter, asembodiedn the obsenation
density This is unreasonableasthe point of allowing for
clutter is thatany type of interfering objectsmight be ex-
pected.

Theproposedrackermaintaingheadvantage®f thelat-
tertwo trackers,while circumventingtheir shortcomingsilt
maintaingtheright level of generalityby relying on knowl-
edgeof theparticularobjectit is tracking,knowledgewhich
is learnedratherthan constructedby hand. However, it
doessowithoutdynamicalmodels,only usingthe moreba-
sic information concernedwith the shapeor geometryof
the objects silhouette. Furthermoreno restrictionson the
typesof clutterto be encounteredremadein the proposed
tracker. Theseissueswill beexploredmorefully in therest
of the paper Section2 presentanoverview of thetracler,
discussesssuef terminology andexplainsthe manneiin
which contourmodelsfor particularobjectsmay be built.
Section3 presentghe detailsof the proposedracking al-
gorithm. Section4 presentsxperimentalresultsand con-
cludes.

2. Notation and Contour Models
2.1 Overview and Edge Notation

The basicapproacho contourtrackingis asfollows. In
a given frame, the previous frame’s contouris taken asa
startingpointfor searchindor theedgeof thenew contour
Many algorithmsuseedgesearchwhichis normalto theold
contour in orderto avoid the “apertureproblem” [3], [4].
However, normalsearchalongthesdinesfrequentlyresults
in missededges,particularlyin regionsof high curvature,
or if theframerateis relatively low. In this work, the edge
searchis conductedn circular regionsaroundN equally-
spacedpoints of the old contour referredto assites The
sizeof thesearchregionvariesat eachsite,andis discussed
morefully in [6]. To find edges,V2G is performed,and
thenthreshholdedisinga relatively low threshhold yield-
ing asoutputa binaryimage. This image,which will have
edgeswhich aretoo thick (due to the low threshhold),is
thenthinnedusinga morphologicalthinning operator The
resultis theedge-map.

At eachof the sites,several edgesmay be detectedthe
setof edgesdetectedat the nt” site is denotedE,, (anda
genericedgeat this siteis denotece,,). The multiplicity of
edgesds dueto thefactthatthe objectbeingtrackedis not
theonly objectpresenin the scenethereis clutter, andthis
is whatmakesthe problemdifficult. For if therewereonly
one edgedetectedper site, thenthe contourin the current

frameis effectively detectedwithout ary further computa-
tion. Evenif thebackgrounds fairly pristine,andthe only
objectpresents the onebeingtracked, spuriousedgesnay
still bedetectedlueto theinaccurag of the edge-detection
algorithms the noisepresenin theimage(dueto quantiza-
tion, blooming,andsoon),andbecaus¢heobjectmaypos-
sesgmary interioredgesf is notmonochromeThegoalof
the algorithmis to decidewhich of the edgesdetectedare
the correctones,that is which correspondo the contour
andwhich aredueto clutter An edge-vectoris an N-vector
of pointsonefrom eachsitee = (e1,... ,en) (Or a2N-
vectorif eachelementis takento bearealnumber).Given
an edge-ector, a contourmay be interpolatedthroughits
constituenpoints;this contouris referredto asanobserved
curveanddenoted:. The setof suchobjectsis denotedt.
Thenthegoalis to find theobsenedcurve in £ which best
describeshe contourof the objectbeingtracked.

2.2 Contour Notation

A contoure is acontinuousfunctione : [-1,1] — %2,
which will often be written ¢ = (¢5,¢y). (Thereasonfor
thecuriouschoiceof domainwill becomeapparenshortly)
The spaceof all contoursis denotedC. Cp, is definedto be
thespacenf contourswvhich canbeexpressesapair of ex-
pansiondn thefirst D Legendrepolynomials.The proper
tiesof Legendrepolynomialsaregivenin detailin [10]; for
thecurrentpurposesit is sufficientto notethattheirdomain
is [-1, 1] andthey maybewritten P;(s) = Zle Gijsit,
i = 1,...,D whereG is aknown D x D matrix. (Note:
therelationshipbetweers andthearc-lengths is takento be
s = 25/L — 1, whereL is thetotal arc-length.)Of course,
Cp C C, andasD increasesary elementc of C canbe
increasinghbetterrepresentetly anelemenofCp. In par
ticular, the valueof D is fixed at somevalue high enough
to captureall of the detailin the contoursof the objectof
interest. ThereasorthatLegendrepolynomialsareusedis
thattheir orthogonalitymakesseveralof thealgorithmspre-
sentedn section3 muchsimpler Further they have been
choseroverasetof D complex exponentialsincethelatter
is a setof periodicfunctions,which arethusunsuitablefor
modellingopencontours:capturingdiscontinuitiegequires
very high D, andGibbs’ phenomenatill arise.

A contourin Cp may be identifiedentirely by 2D real
numbersnamely if ¢, (s) = Zf:l vz,:P;(s) andey(s) =
P  4,.:Pi(s) thene(s) = (cz(s),¢,(s)) is completely
specifiedoy thetwo D-vectorsy, andvy,. A compactota-
tionisy = (vz,7y), in whichy sospecifiedis takento be
a2D columnvector Therelationshipbetweere andy may
bewritten moreconciselyasc(s) = (v GZ(s),v, GZ(s))
whereZ(s) = [s%,s%,...,sP7 1T,



2.3. A Contour Model

The modelling of the contoursof a specificobjectmay
now be addressedA typical objectwill giveriseto aclass
of contours: most objectsmay both transformin a rigid
fashion,anddeformin a non-rigid fashion. The goalis to
find a modelwhich will captureall of thesecontours.The
ideahereproposeds thatthe mostconcisemodelis a sub-
setC of C, the contourspace. This subsetcapturesall of
the possiblecontourswhich canarisefrom differentnon-
euclideandeformationsof the objectunderconsideration;
euclideartransformationsvill beconsideredn section2.4.
A relatedapproach2] hasbeentaken to finding suitable
manifoldsfor parametrideaturedetection.

Sinceit hasbeenassumedhatany contourof the object
of interestmay be capturedby a contourin Cp, andsince
Cp hasbeenshavn to beisomorphicto #2P, the problem
of findinganappropriatesubsebf thespaceof contourshas
beenreducedo finding a subsebf ®#2”. Thus: giventhe
K contoursspecfiedby the 2D-vectors{v;}£ |, find the
subsetof ®2” which bestcapturesthe training contours.
A tool which enablesoneto dothis is the Karhunen-Loge
transform(principalcomponenganalysis)whosedetailsare
well known, see[7]. The outputsof this transformarethe
averagevectory andthe setof orthogonalvectorsin £,
labelled{p;}{_,, whereq < 2D, andis oftenmuchsmaller
than2D. Thenthe subsetof ®2” may be takento be the
“shifted linear” spacel’ = {y : vy =6+ 7, 6 € A}
whereA = spar{p1, ... ,p,} andg hasbeenchoserappro-
priately (i.e., to capturemostof the variation). The subset
of contoursC, whichis inducedby T, is then

C={ceClp:c()=(1;GZ(),v, GZ()),7 € T}

Theproblemwith thisapproachs thatthespaceC is not
compact.Compactness a desirablepropertyfor the con-
tour subsetasthe subseshouldbe boundedptherwisethe
subsetvill containcontourshapesvhich donotcorrespond
to the objectof interest.(Recall: only non-euclideamefor
mationsare beingconsidered.)As aresult,the Karhunen-
Loeve procedurenay be modifiedslightly to getacompact
subsetSpecifically thesubsel is emendedo be

q
P={y:y=> vipi+7 |l <b}
i=1

whichis itself compactandinducesa compactC'. Thevec-
torsp; andthevalueof g arefoundasbefore andthebounds
{bi}gzl arefound by b; = max; <g<K |7I’£pi|'

To summarizethen,thefollowing formalismwill prove
corvenient:

C={ceCp:c()=(LGZ(),vGZ()),y €T}

P={ye®RP:y=pp+7, ¢e¥}
‘II:{’l,[}qul’lj}Zle“ 7/:1,,(]}

wherep is the 2D x g matrix whosecolumnsare the p;.
Thekey insightis thatany contourof the objectof interest
is specifiedby a g-dimensionalectoryy whichis amember
of thecompactsetW.

2.4. Affine Transformations

It is preferableif the training contoursusedfor finding
C simply capturenon-rigid transformationsandeuclidean
similarity transformationsareignored. The reasonis that
thereis a standardmathematicatheory of the euclidean
similarity transformationswhich can be implementedin
straightforvard fashion. In particular ary euclideansimi-
larity transformatiormay be representeésy — W(v)v
where

_ M 0 Y= Yy
W) [0 B ]
where0 = [0,0,...0]T, u is thefirst columnof (GT)~1,
andv € R*. (For a derivation, see[6].) v; corresponds
to translationin the z-direction, s to translationin the y-
direction,andwvz andv, togethercover rotationandscaling.
At ary givenframet, V?, the setof possibleeuclidean
similarity transformationsjs ®*. However, supposethat
the camerais fixed, andit is known that the objectitself
may only translate(including translationtowardsthe cam-
era)androtateat a certainrate. ThenV* may be approxi-
matedas

Vi={v:vt<v; <ol i=1,...,4}

wherethe valuesof bounds,in termsof bothv*~! andthe
more basic parametersAr,, Ar,, A8, and Ag, may be
foundin [6].

3. The Tracking Algorithm

The essenceof the tracking algorithm is as follows.
Given the contour from the previous frame, the current
frame’s imageis searchedor edgesat N equally-spaced
pointsalongthe old contour Searchis in circular regions
centeredat eachsite. At eachsite, several edgesare de-
tectedithegoalof thetrackingalgorithmis to sortoutwhich
of the edgescorrespondo the true contour Framingthe
problemin this mannermalkesit particularly amenableo
trackingin clutter.

3.1 Basic Setupand Objective Function

Following the edgesearch,dataconsistsof the setsof
edgedletectechteachsite,{ E, }2_; , andthroughthecom-
poundingof thesethesetof obseredcurves,£. Thetrack-
ing algorithmis posedasthe solutionto the minimization

problem



Beginwith £%° (asgivenby thecoarse-to-finalgorithm,see
section3.3).Lett; = 1.

STEP1:

Givenst’“_l, (ct,tl 7wt,t1) — argmin||c _ wst,tl—lu
c,w

STEP2:

Givenchtt andw®?, g%t = agmin||cttt — whtie||
€

t1 + t1 + 1. Goto STEP 1.

Figure 1. The local minimization algorithm.

min _|le— we|| (1)
e€€,ceCwe

wheref? is the setof allowed euclidearsimilarity transfor
mations.w is onesuchtransformationand|| - || is the L
norm. Theideais to find the edge-ector, thatis, the list
of obsenededges (at most)onefrom eachsite, whosein-
terpolatedcontouris closestto the learnedcontoursubset
C. (The mannerin which the thesecontoursareinterpo-
latedis discussedn [6].) Of course,aswas discussedn
section2.3, C is learnedfrom training contoursin a single
orientationthus,euclidearsimilarity transformationsf the
obsened curvesmustbe takeninto accountwhich results
in thepresencefw. Theparticularpartof theoptimization
solutionwhich is of interestis the minimizing ¢; in partic-
ular, w;jncmm is taken to be the contourfor the current
frame.

This optimizationproblemis peculiarin seseral ways.
First, it hasboth continuousand discreteelements.While
theset€ is fundamentallydiscrete dueto thefactthatafi-
nite numberof edgesareobsened,bothc andw arecontin-
uous. Furthermore¢ is generatedy searchingat NV sites;
sincetypically a few edgeswill befoundat eachsite, £ is
thusO(m™) in size. As a result, exhaustve searchover
thediscretepartof the problemis ruled out for any reason-
ablesizedN. Thegoalof this section thereforewill beto
describeanefficientway to solve the optimizationproblem.
Thebasicmethodwill beasfollows. First,analgorithmwill
bedetailedwhich enableslocal minimumof the function
to befound;thisalgorithmis iterativein nature andhastwo
distinctsteps.Secondan algorithmfor finding a goodini-
tial conditionis explained;this initial conditionis thenfed
into the local minimizationroutine, which thenmay result
in the global minimum (andif not, somethingcloseto the
globalminimum). This latterproceduras referredto asthe
coarse-to-fin€CTF) minimizationalgorithm.

3.2 The Local Minimization Algorithm

An iterative procedurds proposedwhich is guaranteed
to corvergeto thelocal minimum. In the procedureshavn
in Figurel, t; is thetime-stepof theiterations,asopposed

Given: €°,~°,v°.
W =Ww(e9
¢ =p"(v° -7
U = p'p (U; denotegheit” rowof U)
Lett R=W"W (R; denoteghei*® rowof R)
z if a<z<b
Notation: {(x}.={a if z<a
b if z>0b
to=1
do
fori= 1toq
w=Wo2~! -5
$i2 = ((ui — Usp®2 ™" + Uy ™) [Uis) %,
to —ta+1
end
forj=1to4
r=WpyT +79)
v = {(rj = Bjv" " + Rjjv?_l)/Rjj)Z
to —ta+1
end
until ¢» andv haveconverged

Figure 2. The step 1 algorithm.

to ¢ which is the overall time (i.e., which frame the algo-
rithm hasreached) Proofthatthis iterative proceduredoes
indeedcorvergeto thelocal minimumis containedn [6].

As thealgorithmstandsnot muchhasbeengained since
it is not known how to actuallyimplementstepl or step2.
However, the problemin (1) maybewritten

min [}y — W(e)v||
e€&t,yel',weY?

usingtheresultsof section2.4, wherenow thenorm|| - || is
theusualeuclideamormin 2. With this in mind, stepl
may be solveditself via aniterative procedure.This proce-
durewill have its own time-scalete, which is subordinate
to botht¢ andt;. However, for easeof notation,both super
scriptst andt; will be suppressedrhealgorithmis shavn
in Figure?2; the proof thatthis proceduredoesindeedlead
to therequiredminimumis detailedin [6].

Step 2 seemsto require an exhaustve search,in that
all interpolatededge-ectorsmustbe evaluated. This is an
O(m™) operationandis thusunreasonabla practice.In-
steadnotethatif N is large,sothatc doesnotvary much
too muchover intervals of length2/N, thenthe following
approachmaybeused:

lle — well® Z/_IIIC(S)— (we)(s)]*ds

2 N
~ N Z lle(sn) — wenl|2
n=1
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Figure 3. Tracking a flexing fing er.
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framel7 frame18
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frame130

edge-magor frame75

Figure 4. Tracking a speaker’s lips.

wheres,, = =1+ 2(n — 1/2)/N ande,, is the nt" point
of the edge-ectore = (ey,...,en) from which £ was
interpolated. If the approximationis valid, the problem
ming¢¢ [|e — we|| is equivalentto

N

. 2 2
min — E c(sn) — we
¢1€E1,...,.en€Exn N — lle(zn) nll

=N Z [ mmn lle(sn) — wen||?

in thatbothproblemswill giveriseto thesameedge-ector
e andhencethe sameobsenedcurvee. Thelatterproblem
is anO(N) problem:it is a simplematterto determineat
eachsite, which of the edges(properly orientedby w) is
the closestto the point ¢(s,,). Of courseall edgesmustbe
transformedy w beforehandbut thisis alsojustan O(N)

operation.Thus,it hasbeendemonstratethatboth stepsof
theiterative procedurdor finding a local minimumcanbe
implementeckfficiently.

3.3 The CTF Minimization Algorithm

Local minimization of (1) is useful, but what is really
desiredis the global minimum. Whatis suggesteds not a
way to reachthis globalminimumwith certainty but rather
away to cleverly pick aninitial conditiong®? for thelocal
minimization routine: the coarse-to-fingCTF) minimiza-
tion algorithm.

Supposéhereareintegersd andM suchthatN = d™ +
1. Thereare M consecutie stagef decisionsLet x]} =
idM—m 4 (§—1)dM—™+1+1. In stagel, asingledecisionis
made,namely which edgesat the sites{x}; }&_, shouldbe
selectedTheedgesareselectedas=(xg,, - - - » X1 ), Where
= is definedby

B yeeeymp) =

0 (oain e -s6c) =)

In the above definition, 71,..., 7. are ary r sites, and
H(m,...,7) is the setof all possibleconfigurationsof
pointsat suchsites,ascanbe derivedfrom thelearnedsub-
setC (see[6] for more details). Thatis, = is the set of
pointse,,...,es, atsitesmy,...,w,. which, out of all of
theobsenedpointsattherelevantsites,areclosesto those
which have beenlearned.Usingknowledgeof H, theinner
minimizationproblemcanbe solved|[6].

In them** stagejm = 2,..., M, thereared™ ! deci-
sionsmade.The jt* suchdecisioninvolvesselectingedges
at the sites {X7}¢=), as B, .- Ty 5 X0 X3,
whereZ is definedby

‘é(ﬂ-% .- -7771'—1;7717777‘) =

{eﬁaergET}n:;; (heH(Ifrlf?..,m llems. s en] h”)
Thatis, e, ande,,. arefixed,asthey have beenselectedn
apreviousstage Thusedgesareselectedn acoarse-to-fine
manneyandthereareatotalof ).~ Mol gi = (dM —1) /(d—

1)< N/(d-1) deC|S|0nsS|ncethet|mefor eachdecision
is O(1), thealgorithm’s overall runningtimeis O ().

4. Resultsand Conclusions

Two setsof resultsare presentedo illustrate the effec-
tivenessof the proposedtracker: a flexing finger and a
spealer'slips. A summaryis givenin Tablel. In thelat-
ter caselipstick wasusedto help highlight contrastin both



Experiment| N | D | VideoRate | Resolution| TrainingSequence| RunningSequence| Accurag/
Finger 80 | 20 13Hz 320by 240 | 120frames=9.2s | 166frames=12.8s | 100%
Lips 80 | 20 13Hz 320by 240 | 200frames=15.4s | 130frames=10.0s 94%

Table 1. Summary of the experiments.

the training and running sequencesThe edge-magn the
caseof thefingerwasgeneratedrom the gray-scalenten-
sity; clutteris clearlyvisiblein theedge-magshovn in Fig-
ure 3, andis in the form of both the backgroundobjects
(keys, pens)aswell asthe self-clutterof the doubledover
finger A sequencef tracked framesis shawvn in Figure
3; in this instance the tracker got all 166 tracked frames
correct. In the caseof the spealer’s lips, the edge-map
was generatedrom the greenportion of the RGB image,
which hasslightly bettercontrasthantheintensity Clutter
is clearly visible in the edge-mapshavn in Figure 4, due
to the detectionof mary extraneousedges,aswell asthe
factthat over the searchrangethe lips interferewith each
other A sequencef tracked framesis shovn in Figure4,
andthetracker got 94%of thetrackedframescorrect;how-
ever, equallyimportantasthishigh successateis theability
to recover from the occasionakrror, asshavn in Figure5s.
Full video sequencesf both tracking experimentscan be
viewed at http://himmel.deas.haard.edufunderprojects:
audio/visuabasedspeectenhancement).

O

frame49

.

frame48

Figure 5. Recovering from mistakes.

In the light of thesehighly successfubxperimentalre-
sults, it is worth restatingsomeof the advantageshat are
presentedy this algorithmover othercontourtrackingap-
proachesAs opposedo thedeformabldemplateapproach,
thereis no needfor hand-constructethodelsof theobject's
geometry;ratherthis is learned. Whereaselastic snales
useno specialinformationaboutthe objectunderstudy, the
learnedinformation usedby the subsettracker allows for
moreaccuratetracking. Furthermorethe subsetracker is
computationallyless burdensomehan thesetwo types of
trackers. The subsetracker dealswell with clutter, which
is a main failing of the Kalmantracker. Finally, thereare
severaladvantagesverthecondensatiotracker. (Morede-

tail is presentedhere asthecondensatiotracker represents

the state-of-the-arin termsof contourtrackers.) First, no
dynamicalmodelsarerequired;only shape/geometriynfor-
mation,asembodiedin , is needed. This representsan
adwantageas multiple typesof complex motion are possi-
ble for mary moving objects,andthis may be difficult to

modelaccurately By contrastthe shapesetof anobject’s
silhouettess independentf thatobjectsmotion. Seconda
methodis presentedor learningthe complex geometrian-
formationof the contoursubsefrom trainingdata,whereas
in [4], this information mustsometimede constructedy
hand (for example,in the caseof the shapespaceof the
moving hand).Third, thecondensatiompproachmakesas-
sumptionsaboutthe typesof clutter likely to be encoun-
tered;no suchassumptionsiremadehere. As aresult,the
subsetracker is very generalin termsof the typesof ob-
jectsit cantrack,aswell asthe backgroundsgainstwhich
theseobjectsmove. Neitherlow frame-ratenor poorlight-
ing presenparticularproblems.

References

[1] N.Ayache]. Cohenandl. Herlin. Medicalimagetracking.
In A. Blake andA. Yuille, editors,ActiveVision, page285—
302.MIT PressCambridgeMA, 1992.

[2] S.Baker, S. Nayar andH. Murase. Parametricfeaturede-
tection. Int. J. Comp.Ms., 27(1):27-50,1998.

[3] A. Blake, R. Curwen,andA. Zisserman.A frameawvork for
spatio-temporatontrol in the tracking of visual contours.
Int. J. Comp.Ms., 11(2):127-1451993.

[4] A. Blake andM. Isard. Condensation conditionaldensity
propagatiorfor visualtracking. Int. . Comp.Ms., 29(1):5—
28,1998.

[5] B. Dalton,R. Kaucic,andA. Blake. Automaticspeechread-
ing usingdynamiccontours.n Proceeding®NATO ASICon-
ferenceon Speehreading by Man and Machine: Models,
Systemsand Applications NATO Scientific Affairs Divi-
sion, Septembef995.

[6] D.FreedmanContourtrackingin clutter:asubsetpproach.
Technicalreport, Division of Engineeringand Applied Sci-
encesHarvard University, 1999.

[7] S.Haykin. AdaptiveFilter Theory Prentice-Hall,Upper
SaddleRiver, N.J.,3rd edition, 1996.

[8] M. Kass,A. Witkin, andD. Terzopoulos. Snales: active
contourmodels. In Proc. 1st Intern. Conf Comput.Ms.,
London,Junel987.

[9] G. Sullivan. Visualinterpretationof known objectsin con-
strainedscenesPhil. Trans.Roy Soc.LondonB, 337:109—
118,1992.

[10] G.Szao.Orthogonalpolynomials AmericanMathematical
Society Providence,1975.

[11] A. Yuille, P. Hallinan, and D. Cohen. Featureextraction
from facesusingdeformabletemplates.Int. J. Comp.Ms.,
8(2):99-1121992.



