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Abstract

A new methodfor trackingcontoursof movingobjectsin
clutter is presented.For a givenobject,a modelof its con-
toursis learnedfromtrainingdatain theformof a subsetof
contourspace. Greatercomplexity is addedto thecontour
modelby analyzingrigid andnon-rigid transformationsof
contoursseparately. In thecourseof tracking, multiplecon-
tours may be observeddue to the presenceof extraneous
edgesin the form of clutter; the learnedmodelguidesthe
algorithm in picking out the correct one. The algorithm,
which is posedasa solutionto a minimizationproblem,is
madeefficient by the useof several iterative schemes.Re-
sultsapplyingthe proposedalgorithm to the tracking of a
flexing finger andto a conversingindividual’s lips are pre-
sented.

1. Problem Moti vation and Review

This work addressesthetrackingof moving contoursin
a video-stream.Specifically, given a sequenceof images
in which a known objectof interestis in motion, the goal
is to track the object’s silhouetteacrosstime-varying im-
ages.Applicationsaboundin medicine(automatedanaly-
sisof humanorganperformance,[1]), surveillance[9], and
audio-visualspeechrecognitionfor noisyenvironments[5].
In this paper, a new contourtracker, the“subset-tracker,” is
proposed,basedon a ratherdifferentphilosophythanthose
of the existing trackers. Before presentingthe new algo-
rithm, it is worth reviewing theexisting approaches.

The deformabletemplateapproach[11] minimizes,for
eachframe,anenergy functionwhich is specificto thege-
ometryof thetrackedobject.Elasticsnakes[8] minimizea
moregeneralenergy function, which hastermsrepresent-
ing elasticand tensileenergy to ensurethat the snake is
smooth,andanimage-dependenttermthatpushesthesnake
towardsthe featureof interest.TheKalmantracker [3] re-
quiresa learnedlinear stochasticdynamicalmodelwhich

describestheevolutionof thecontourto betracked.Assum-
ing that the observation of the contourhasbeencorrupted
by Gaussiannoise,the conditionaldensityof the contour
givenall pastobservationsmaybefound,andthenusedto
estimatethecontourposition.Thecondensationtracker [4]
alsoassumesadynamicalmodeldescribingcontourmotion
is known andthat impreciseobservationsaremade.How-
ever, boththedynamicalsystemandtheobservationprocess
maybecompletelygeneralandtheconditionaldensitymay
be propagatedforward in time using the numericaltech-
niqueknown as the “condensation”method. This density
maythenbeusedfor estimatingthecurrentcontour.

A principal problem of the deformabletemplateap-
proachis thatfor any givenapplication,hand-craftingis re-
quired;that is, if it is desiredto track themotionof lips, a
specificenergy functionthat is appropriatefor lips mustbe
designed.Thesnakemethoddoesnotsuffer from thisprob-
lem; snakeswill in principal find the edgesof any object
whoseoutlinesareacontinuousclosedcurve. However, the
methodis too generalin thesensethat its modesof detec-
tion arenot tunedto themotionof any particularobject,so
that it is not particularly efficient. Furthermore,both de-
formabletemplatesandelasticsnakessuffer from problems
of slownessin trackingcontoursthroughmultiplesimages.
TheKalmantracker hastheright level of generalityin that
it neednot behand-craftedfor any specificapplicationand
adynamicalsystemfor therelevantclassof contourscanbe
learned.Furthermore,theprocessof findingobservationsis
fast,so that the whole algorithmis muchquicker thanei-
therof theabove techniques.However, theKalmantracker
ignoresabasicproblemin tracking:thepresenceof clutter.
Cluttercancomefrom detectededgeswhich areeitherex-
traneousto theobject,or intrinsic to it. In eithercase,there
areoften multiple edges,andthereis no oneobservation;
rather, therearea multiplicity of observed contours. This
problemis addressedby the condensationtracker, which
is designedspecificallyto dealwith clutter. However, this
tracker hastwo shortcomings.First, it requiresa dynami-
cal modelof theobjectbeingtracked. This is problematic,



asin many casesmultiple motionsmaybepossiblefor the
sameobject (for example,a finger may flex, translate,or
rotate),and in practicethis multiplicity canbe difficult to
model. Second,the condensationtracker postulatesa par-
ticular form for theclutter, asembodiedin theobservation
density. This is unreasonable,asthe point of allowing for
clutter is that any type of interferingobjectsmight be ex-
pected.

Theproposedtrackermaintainstheadvantagesof thelat-
ter two trackers,while circumventingtheirshortcomings.It
maintainstheright level of generalityby relying on knowl-
edgeof theparticularobjectit is tracking,knowledgewhich
is learnedrather than constructedby hand. However, it
doessowithoutdynamicalmodels,only usingthemoreba-
sic information concernedwith the shapeor geometryof
theobject’s silhouette.Furthermore,no restrictionson the
typesof clutterto beencounteredaremadein theproposed
tracker. Theseissueswill beexploredmorefully in therest
of thepaper. Section2 presentsanoverview of thetracker,
discussesissuesof terminology, andexplainsthemannerin
which contourmodelsfor particularobjectsmay be built.
Section3 presentsthe detailsof the proposedtrackingal-
gorithm. Section4 presentsexperimentalresultsandcon-
cludes.

2. Notation and Contour Models

2.1. Overview and EdgeNotation

Thebasicapproachto contourtrackingis asfollows. In
a given frame, the previous frame’s contouris taken asa
startingpointfor searchingfor theedgesof thenew contour.
Many algorithmsuseedgesearchwhichis normalto theold
contour, in order to avoid the “apertureproblem” [3], [4].
However, normalsearchalongtheselinesfrequentlyresults
in missededges,particularly in regionsof high curvature,
or if theframerateis relatively low. In this work, theedge
searchis conductedin circular regionsaround � equally-
spacedpointsof the old contour, referredto assites. The
sizeof thesearchregionvariesateachsite,andis discussed
more fully in [6]. To find edges,��� � is performed,and
thenthreshholdedusinga relatively low threshhold,yield-
ing asoutputa binary image.This image,which will have
edgeswhich are too thick (due to the low threshhold),is
thenthinnedusinga morphologicalthinningoperator. The
resultis theedge-map.

At eachof thesites,severaledgesmaybedetected;the
setof edgesdetectedat the �	� 
 site is denoted�
� (anda
genericedgeat this site is denoted� � ). Themultiplicity of
edgesis dueto the fact that theobjectbeingtracked is not
theonly objectpresentin thescene;thereis clutter, andthis
is whatmakestheproblemdifficult. For if therewereonly
oneedgedetectedper site, thenthe contourin the current

frameis effectively detectedwithout any further computa-
tion. Evenif thebackgroundis fairly pristine,andtheonly
objectpresentis theonebeingtracked,spuriousedgesmay
still bedetecteddueto theinaccuracy of theedge-detection
algorithms,thenoisepresentin theimage(dueto quantiza-
tion,blooming,andsoon),andbecausetheobjectmaypos-
sessmany interioredgesif is notmonochrome.Thegoalof
the algorithmis to decidewhich of the edgesdetectedare
the correctones,that is which correspondto the contour
andwhicharedueto clutter. An edge-vectoris an � -vector
of pointsonefrom eachsite ����� � � � � � �	� � ��� (or a � � -
vectorif eachelementis takento bea realnumber).Given
an edge-vector, a contourmay be interpolatedthroughits
constituentpoints;thiscontouris referredto asanobserved
curveanddenoted� . Thesetof suchobjectsis denoted� .
Thenthegoal is to find theobservedcurve in � which best
describesthecontourof theobjectbeingtracked.

2.2. Contour Notation

A contour � is a continuousfunction ��� � !#" � " $&%(' � ,
which will often be written �)��� � * � � + � . (The reasonfor
thecuriouschoiceof domainwill becomeapparentshortly.)
Thespaceof all contoursis denoted, . , - is definedto be
thespaceof contourswhichcanbeexpressedasapairof ex-
pansionsin thefirst . Legendrepolynomials.Theproper-
tiesof Legendrepolynomialsaregivenin detail in [10]; for
thecurrentpurposes,it is sufficientto notethattheirdomain
is � !#" � " $ andthey maybewritten / 0 � 1 �2�43 -5 6 � �#0 5 1 5 7 � ,8 �9" � � � �	� . where � is a known .;:�. matrix. (Note:
therelationshipbetween1 andthearc-length<1 is takento be1��4�=<1 > ?@!A" , where? is thetotal arc-length.)Of course,, -CB9, , andas . increases,any element� of , canbe
increasinglybetterrepresentedby anelementof , - . In par-
ticular, the valueof . is fixed at somevaluehigh enough
to captureall of the detail in the contoursof the objectof
interest.ThereasonthatLegendrepolynomialsareusedis
thattheirorthogonalitymakesseveralof thealgorithmspre-
sentedin section3 muchsimpler. Further, they have been
chosenoverasetof . complex exponentialssincethelatter
is a setof periodicfunctions,which arethusunsuitablefor
modellingopencontours:capturingdiscontinuitiesrequires
veryhigh . , andGibbs’ phenomenastill arise.

A contourin , - may be identifiedentirely by � . real
numbers;namely, if � * � 1 ���D3 -0 6 �FE * G 0 /=0 � 1 � and � + � 1 ���3 -0 6 �FE + G 0 / 0 � 1 � then � � 1 ���H� � * � 1 � � � + � 1 � � is completely
specifiedby thetwo . -vectorsE * and E + . A compactnota-
tion is E �I� E * � E + � , in which E sospecifiedis takento be
a � . columnvector. Therelationshipbetween� and E may
bewrittenmoreconciselyas � � 1 �2�J� E	K* ��L�� 1 � � E	K+ ��L�� 1 � �
whereL#� 1 �2�J� 1 M � 1 � � � � �	� 1 - 7 � $ K .



2.3. A Contour Model

The modellingof the contoursof a specificobjectmay
now beaddressed.A typical objectwill give riseto a class
of contours: most objectsmay both transformin a rigid
fashion,anddeformin a non-rigid fashion.The goal is to
find a modelwhich will captureall of thesecontours.The
ideahereproposedis that themostconcisemodelis a sub-
set N of O , the contourspace.This subsetcapturesall of
the possiblecontourswhich canarisefrom differentnon-
euclideandeformationsof the objectunderconsideration;
euclideantransformationswill beconsideredin section2.4.
A relatedapproach[2] hasbeentaken to finding suitable
manifoldsfor parametricfeaturedetection.

Sinceit hasbeenassumedthatany contourof theobject
of interestmay be capturedby a contourin O P , andsinceO P hasbeenshown to be isomorphicto QSR P , the problem
of findinganappropriatesubsetof thespaceof contourshas
beenreducedto finding a subsetof QSR P . Thus: given theT

contoursspecfiedby the U V -vectors W X Y Z [Y \=] , find the
subsetof QSR P which bestcapturesthe training contours.
A tool which enablesoneto do this is theKarhunen-Loeve
transform(principalcomponentanalysis),whosedetailsare
well known, see[7]. Theoutputsof this transformarethe
averagevector ^X andthesetof orthogonalvectorsin QSR P ,
labelledW _F` Z a` \=] , whereb#cAU V , andis oftenmuchsmaller
than U V . Thenthe subsetof QSR P may be taken to be the
“shifted linear” spacedIefW XDgSXheCi�jD^X=klinmDo�Z
whereoDe spanW _	] k p p p=k _ a Z andb hasbeenchosenappro-
priately (i.e., to capturemostof the variation). The subset
of contoursN , which is inducedby d , is thenN4e4W q
mrO Png q s t u2e4s X	vw&x�y s t u k X	vz2x#y s t u u k X{m{d Z

Theproblemwith thisapproachis thatthespaceN is not
compact.Compactnessis a desirablepropertyfor thecon-
toursubset,asthesubsetshouldbebounded;otherwise,the
subsetwill containcontourshapeswhichdonotcorrespond
to theobjectof interest.(Recall:only non-euclideandefor-
mationsarebeingconsidered.)As a result,the Karhunen-
Loeveproceduremaybemodifiedslightly to getacompact
subset.Specifically, thesubsetd is emendedto bed{e4W X{g Xre a| ` \=]	} ` _F`Fjn^X k�~ } ` ~ c�� ` Z
which is itself compactandinducesa compactN . Thevec-
tors_F` andthevalueof b arefoundasbefore,andtheboundsW � ` Z a` \=] arefoundby � `=eA�)� � ] �	Y � [ ~ X vY _F` ~ .

To summarize,then,thefollowing formalismwill prove
convenient:N4e4W q
mrO Png q s t u2e4s X vw&x�y s t u k X vz2x#y s t u u k X{m{d Zd{e4W X{m{Q R P g Xre@_ } jn^X k } m{�#Z�ne4W } mrQ a gF~ } ` ~ c�� ` k��&eJ� k p p p	k b Z

where _ is the U VC�@b matrix whosecolumnsare the _F` .
Thekey insight is thatany contourof theobjectof interest
is specifiedby a b -dimensionalvector} which is amember
of thecompactset � .

2.4. Affine Transformations

It is preferableif the training contoursusedfor findingN simply capturenon-rigid transformations,andeuclidean
similarity transformationsare ignored. The reasonis that
there is a standardmathematicaltheory of the euclidean
similarity transformationswhich can be implementedin
straightforward fashion. In particular, any euclideansimi-
larity transformationmay be representedas XJ���Ds X	u �
where �Ds X	u2eC� ��� X w�� X z��� X z X w��
where � e;� � k � k p p p � � v , � is the first columnof s x v u � ] ,
and �4mhQ2� . (For a derivation, see[6].) � ] corresponds
to translationin the � -direction, � R to translationin the � -
direction,and � � and� � togethercoverrotationandscaling.

At any given frame � , �&  , the setof possibleeuclidean
similarity transformations,is Q2� . However, supposethat
the camerais fixed, and it is known that the object itself
mayonly translate(including translationtowardsthe cam-
era)androtateat a certainrate. Then �   may be approxi-
matedas ¡�   enW �)g �   ` c�� ` c �   ` k �&eJ� k p p p k ¢ Z
wherethe valuesof bounds,in termsof both �   � ] andthe
more basicparameterso#£ w , o�£ z , o#¤ , and o�¥ , may be
foundin [6].

3. The Tracking Algorithm

The essenceof the tracking algorithm is as follows.
Given the contour from the previous frame, the current
frame’s imageis searchedfor edgesat ¦ equally-spaced
pointsalongthe old contour. Searchis in circular regions
centeredat eachsite. At eachsite, several edgesare de-
tected;thegoalof thetrackingalgorithmis to sortoutwhich
of the edgescorrespondto the true contour. Framingthe
problemin this mannermakes it particularlyamenableto
trackingin clutter.

3.1. BasicSetupand ObjectiveFunction

Following the edgesearch,dataconsistsof the setsof
edgesdetectedateachsite, W §
¨ Z ©¨ \=] , andthroughthecom-
poundingof these,thesetof observedcurves,ª . Thetrack-
ing algorithmis posedasthe solutionto the minimization
problem



Begin with « ¬ ­ ® (asgivenby thecoarse-to-finealgorithm,see
section3.3). Let ¯ ° ±�² .
STEP 1:
Given « ¬ ­ ¬ ³ ´ ° µ ¶ · ¬ ­ ¬ ³ µ ¸ ¬ ­ ¬ ³ ¹=± argminº ­ »H¼ · ½)¸ « ¬ ­ ¬ ³ ´ ° ¼
STEP 2:
Given · ¬ ­ ¬ ³ and ¸ ¬ ­ ¬ ³ µ « ¬ ­ ¬ ³ ± argmin¾ ¼ · ¬ ­ ¬ ³ ½)¸ ¬ ­ ¬ ³ « ¼¯ ° ¿I¯ °FÀ@² . Go to STEP 1.

Figure 1. The local minimization algorithm.

Á�Â ÃÄ Å Æ Ç È Å É	Ç ÊFÅ Ë�Ì Í2Î�Ï ÐFÌ (1)

whereÑ is thesetof allowedeuclideansimilarity transfor-
mations,Ï is onesuchtransformation,and Ì�ÒFÌ is the Ó2Ô
norm. The idea is to find the edge-vector, that is, the list
of observededges,(at most)onefrom eachsite,whosein-
terpolatedcontouris closestto the learnedcontoursubsetÕ

. (The mannerin which the thesecontoursare interpo-
lated is discussedin [6].) Of course,aswasdiscussedin
section2.3,

Õ
is learnedfrom trainingcontoursin a single

orientation;thus,euclideansimilarity transformationsof the
observedcurvesmustbe taken into account,which results
in thepresenceof Ï . Theparticularpartof theoptimization
solutionwhich is of interestis theminimizing Í ; in partic-
ular, Ï2Ö=×Ø2Ù Ú Í ØSÙ Ú is taken to be the contourfor the current
frame.

This optimizationproblemis peculiarin several ways.
First, it hasboth continuousanddiscreteelements.While
theset Û is fundamentallydiscrete,dueto thefact thata fi-
nitenumberof edgesareobserved,both Í and Ï arecontin-
uous.Furthermore,Û is generatedby searchingat Ü sites;
sincetypically a few edgeswill be foundat eachsite, Û is
thus Ý�Þ ßrà�á in size. As a result, exhaustive searchover
thediscretepartof theproblemis ruledout for any reason-
ablesized Ü . Thegoalof this section,therefore,will beto
describeanefficientway to solvetheoptimizationproblem.
Thebasicmethodwill beasfollows.First,analgorithmwill
bedetailedwhich enablesa local minimumof thefunction
to befound;thisalgorithmis iterativein nature,andhastwo
distinctsteps.Second,analgorithmfor finding a goodini-
tial conditionis explained;this initial conditionis thenfed
into the local minimizationroutine,which thenmay result
in the global minimum (andif not, somethingcloseto the
globalminimum).This latterprocedureis referredto asthe
coarse-to-fine(CTF)minimizationalgorithm.

3.2. The Local Minimization Algorithm

An iterative procedureis proposedwhich is guaranteed
to convergeto the local minimum. In theprocedureshown
in Figure1, â × is thetime-stepof theiterations,asopposed

Given: « ® , ã ® , ä ® .
Let:

å ± å ¶ « ® ¹æ ® ±{ç è ¶ ã ® ½@éã ¹ê ±rç è ç (
ê	ë

denotesthe ì ¬ í row of
ê

)î ± å è å (
î2ë

denotesthe ì ¬ í rowof
î

)

Notation: ï ð ñ òóSôHõö÷ öø
ð if ù#ú�ð�ú{ûù if ð�ü�ùû if ð�ý�û

¯ þ&±�²
do

for i = 1 to qÿ ± å ä ¬ � ´ °=½@éãæ ¬ �ë ±nï ¶ ÿ ë ½ ê	ë æ ¬ � ´ ° À ê	ë ë æ ¬ � ´ °ë ¹ � ê	ë ë ñ ò �´ ò �¯ þ&¿I¯ þ=À�²
end
for j = 1 to 4� ± å ¶ ç æ ¬ � ´ ° À éã ¹ä ¬ �� ±nï ¶ � � ½ î � ä ¬ � ´ ° À î � � ä ¬ � ´ °� ¹ � î � � ñ �� ��� ��¯ þ&¿I¯ þ=À�²
end

until
æ

and ä haveconverged

Figure 2. The step 1 algorithm.

to â which is the overall time (i.e., which framethe algo-
rithm hasreached).Proof that this iterative proceduredoes
indeedconvergeto thelocal minimumis containedin [6].

As thealgorithmstands,notmuchhasbeengained,since
it is not known how to actuallyimplementstep1 or step2.
However, theproblemin (1) maybewrittenÁ�Â ÃÄ Å Æ � Ç 	 Å 
 Ç � Å
�� � Ì �)Î�� Þ Ð á � Ì
usingtheresultsof section2.4,wherenow thenorm Ì&Ò Ì is
theusualeuclideannormin � Ô � . With this in mind,step1
maybesolveditself via aniterative procedure.This proce-
durewill have its own time-scaleâ Ô , which is subordinate
to both â and â × . However, for easeof notation,bothsuper-
scriptsâ and â × will besuppressed.Thealgorithmis shown
in Figure2; the proof that this proceduredoesindeedlead
to therequiredminimumis detailedin [6].

Step 2 seemsto require an exhaustive search,in that
all interpolatededge-vectorsmustbeevaluated.This is anÝ�Þ ß{à�á operation,andis thusunreasonablein practice.In-
stead,notethat if Ü is large,so that Í doesnot vary much
too muchover intervalsof length � � Ü , thenthe following
approachmaybeused:

Ì Í2Î{Ï&Ð Ì Ô���� ×Ö=× Ì Í Þ � á Î Þ Ï Ð á Þ � á Ì Ô � �� �Ü à�Ú � × Ì Í Þ � Ú á Î�Ï! Ú Ì Ô



frame23 frame40 frame57 edge-mapfor frame57 frame75

Figure 3. Tracking a flexing fing er.

frame17 frame18 frame75 edge-mapfor frame75 frame130

Figure 4. Tracking a speaker’ s lips.

where " #%$'&)(�*,+ - .�&�( / + 0 / 1 and 2 # is the .43 5 point
of the edge-vector 2�$6- 2 7 8 9 9 948 2 :�0 from which ; was
interpolated. If the approximationis valid, the problem<>= ? @ A B)C D &�E
; C is equivalentto<>= ?F G A H G I J J J I F K A H K +1 :L# MN7 C D - " # 0
&�E!2 # C O$ +1 :L# M
7�P <>= ?F Q A H Q C D - " # 0
&�E!2 # C O R
in thatbothproblemswill giveriseto thesameedge-vector2 andhencethesameobservedcurve ; . Thelatterproblem
is an ST- 1U0 problem: it is a simplematterto determine,at
eachsite, which of the edges(properly orientedby E ) is
theclosestto thepoint D - " # 0 . Of courseall edgesmustbe
transformedby E beforehand,but this is alsojust an ST- 1U0
operation.Thus,it hasbeendemonstratedthatbothstepsof
the iterative procedurefor finding a local minimumcanbe
implementedefficiently.

3.3. The CTF Minimization Algorithm

Local minimization of (1) is useful, but what is really
desiredis theglobalminimum. What is suggestedis not a
wayto reachthisglobalminimumwith certainty, but rather,
a way to cleverly pick an initial condition ; 3 I V for the local
minimization routine: the coarse-to-fine(CTF) minimiza-
tion algorithm.

SupposethereareintegersW and X suchthat 1Y$,W Z[*( . Thereare X consecutivestagesof decisions.Let \
]^ _>$` W Z>a4]b*T- cd&b( 0 W Z>a4]fe 7 *T( . In stage1,asingledecisionis
made,namely, which edgesat thesites g \ 7^ 7 h i^ M V shouldbe
selected.Theedgesareselectedas jk- \ 7V 7 8 9 9 9 8 \ 7i 7 0 , wherej is definedby

jf- l47 8 9 9 9 8 ldm 0!$
argminn F o p A H o p q rp s Gkt <>= ?5 A ufv w G I J J J I w r x C y 2 w G z 9 9 9 z 2 w r { &�| C }

In the above definition, lN7 8 9 9 9 8 ldm are any ~ sites, and� - l47 8 9 9 9 8 l4m 0 is the set of all possibleconfigurationsof
pointsat suchsites,ascanbederivedfrom thelearnedsub-
set � (see[6] for more details). That is, j is the set of
points 2 w G 8 9 9 9 8 2 w r at sites l47 8 9 9 9 8 l4m which, out of all of
theobservedpointsat therelevantsites,areclosestto those
which havebeenlearned.Usingknowledgeof

�
, theinner

minimizationproblemcanbesolved[6].
In the � 3 5 stage,��$�+ 8 9 9 9 8 X , thereare W ]�a 7 deci-

sionsmade.The c 3 5 suchdecisioninvolvesselectingedges
at the sites g \
]^ _ h i a 7^ MN7 , as �jf- \
]7 _ 8 9 9 9 8 \
]i a 7 I _ z \
]V _ 8 \
]i _ 0 ,
where �j is definedby�jf- l O 8 9 9 9 8 ldm a 7 z l47 8 l4m 0k$

argminn F o p A H o p q r � Gp s � t <>= ?5 A ufv w G I J J J I w r x C y 2 w G z 9 9 9 z 2 w r { &�| C }
Thatis, 2 w G and 2 w r arefixed,asthey havebeenselectedin
apreviousstage.Thusedgesareselectedin acoarse-to-fine
manner, andthereareatotalof � Z�a 7^ M VYW ^ $�- W Z�&�( 0 / - W!&( 0k�,1>/ - W�&�( 0 decisions.Sincethetimefor eachdecision
is ST- ( 0 , thealgorithm’soverall runningtime is S>- 1U0 .
4. Resultsand Conclusions

Two setsof resultsarepresentedto illustratethe effec-
tivenessof the proposedtracker: a flexing finger and a
speaker’s lips. A summaryis given in Table1. In the lat-
ter case,lipstick wasusedto helphighlight contrastin both



Experiment � � VideoRate Resolution TrainingSequence RunningSequence Accuracy
Finger 80 20 13 Hz 320by 240 120frames= 9.2s 166frames= 12.8s 100%
Lips 80 20 13 Hz 320by 240 200frames= 15.4s 130frames= 10.0s 94%

Table 1. Summar y of the experiments.

the training andrunningsequences.The edge-mapin the
caseof thefingerwasgeneratedfrom thegray-scaleinten-
sity; clutteris clearlyvisible in theedge-mapshown in Fig-
ure 3, and is in the form of both the backgroundobjects
(keys, pens)aswell asthe self-clutterof the doubledover
finger. A sequenceof tracked framesis shown in Figure
3; in this instance,the tracker got all 166 tracked frames
correct. In the caseof the speaker’s lips, the edge-map
wasgeneratedfrom the greenportion of the RGB image,
which hasslightly bettercontrastthantheintensity. Clutter
is clearly visible in the edge-mapshown in Figure4, due
to the detectionof many extraneousedges,aswell as the
fact that over the searchrangethe lips interferewith each
other. A sequenceof tracked framesis shown in Figure4,
andthetrackergot94%of thetrackedframescorrect;how-
ever, equallyimportantasthishighsuccessrateis theability
to recover from theoccasionalerror, asshown in Figure5.
Full video sequencesof both trackingexperimentscanbe
viewed at http://himmel.deas.harvard.edu/(underprojects:
audio/visualbasedspeechenhancement).

frame48 frame49

Figure 5. Recovering from mistakes.

In the light of thesehighly successfulexperimentalre-
sults, it is worth restatingsomeof the advantagesthat are
presentedby this algorithmover othercontourtrackingap-
proaches.As opposedto thedeformabletemplateapproach,
thereis noneedfor hand-constructedmodelsof theobject’s
geometry;rather this is learned. Whereaselasticsnakes
usenospecialinformationabouttheobjectunderstudy, the
learnedinformation usedby the subsettracker allows for
moreaccuratetracking. Furthermore,the subsettracker is
computationallylessburdensomethan thesetwo typesof
trackers. The subsettracker dealswell with clutter, which
is a main failing of the Kalmantracker. Finally, thereare
severaladvantagesoverthecondensationtracker. (Morede-
tail is presentedhere,asthecondensationtrackerrepresents
the state-of-the-artin termsof contourtrackers.) First, no
dynamicalmodelsarerequired;only shape/geometryinfor-
mation,asembodiedin � , is needed.This representsan
advantageasmultiple typesof complex motion arepossi-
ble for many moving objects,and this may be difficult to

modelaccurately. By contrast,theshapesetof anobject’s
silhouettesis independentof thatobject’smotion.Second,a
methodis presentedfor learningthecomplex geometricin-
formationof thecontoursubsetfrom trainingdata,whereas
in [4], this informationmustsometimesbe constructedby
hand(for example, in the caseof the shapespaceof the
moving hand).Third, thecondensationapproachmakesas-
sumptionsaboutthe typesof clutter likely to be encoun-
tered;no suchassumptionsaremadehere.As a result,the
subsettracker is very generalin termsof the typesof ob-
jectsit cantrack,aswell asthebackgroundsagainstwhich
theseobjectsmove. Neitherlow frame-ratenor poor light-
ing presentparticularproblems.
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