
International Journal of Computer Vision 38(2), 173–186, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Contour Tracking in Clutter: A Subset Approach

DANIEL FREEDMAN AND MICHAEL S. BRANDSTEIN
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA

freedman@hrl.harvard.edu

msb@hrl.harvard.edu

Abstract. A new method for tracking contours of moving objects in clutter is presented. For a given object, a
model of its contours is learned from training data in the form of a subset of contour space. Greater complexity is
added to the contour model by analyzing rigid and non-rigid transformations of contours separately. In the course
of tracking, multiple contours may be observed due to the presence of extraneous edges in the form of clutter; the
learned model guides the algorithm in picking out the correct one. The algorithm, which is posed as a solution to
a minimization problem, is made efficient by the use of several iterative schemes. Results applying the proposed
algorithm to the tracking of a flexing finger and to a conversing individual’s lips are presented.

Keywords: contour tracking, low-level vision, visual clutter, subset learning, iterative minimization, Legendre
polynomials, morphological filters

1. Problem Motivation

This work addresses the tracking of moving contours
in a video-stream. Specifically, given a sequence of im-
ages in which a known object of interest is in motion,
the goal is to track the object’s silhouette across time-
varying images. This problem has been treated quite
extensively in the computer vision literature, and there
are several different algorithms which have been devel-
oped to address it. In this paper, a new contour tracker,
the “subset-tracker,” is proposed, based on a rather dif-
ferent philosophy than those of the existing trackers.

Contour tracking has a number of useful applica-
tions. With regard to medicine, various imaging tech-
niques, such as magnetic resonance imaging and com-
puter tomographic scanning, require some means of
tracking contours for the automated analysis of human
organ performance. An application of this kind is con-
tained in Ayache et al. (1992). In an entirely different
setting, a common military and espionage application
is surveillance, which is well-suited for the algorithms
of contour tracking; see, for example, Sullivan (1992).
A new application has to do with the tracking of hu-
man lips. It has been noted that observation of a talker’s

lips may be very useful for the recognition and/or en-
hancement speech which has been severely degraded
by noise. While the acoustic signal, or pressure wave,
is of poor quality, the visual signal, or lip-motion, may
be pristine. It is known that both hearing and hearing-
impaired people use the observation of lips to their
advantage in order to better comprehend a talker in
noisy environments. This observation suggests that ex-
ploiting lip contour information has the potential to aid
both in denoising speech waveforms and in recogniz-
ing noisy speech. A necessary prerequisite for such an
algorithm is the ability to track a talker’s lips. Recent
examples of lip-tracking, used for speech analysis, can
be found in Dalton et al. (1995), Mak and Allen (1994),
Luettin et al. (1996), Kaucic et al. (1996) and Bregler
and Konig (1994). On the basis of these potential and
existing applications, it may be concluded that contour
tracking is an interesting and useful problem, worthy
of further study.

Section 2 of this paper briefly reviews existing app-
roaches to the problem. Section 3 presents an overview
of the difficulties presented by contour tracking, and
discusses issues of terminology. Section 4 presents the
details of the proposed tracking algorithm. Section 5

174 Freedman and Brandstein

presents experimental results, and some conclusions
are discussed in section 6.

2. Existing Tracking Algorithms

2.1. Standard Approaches to Contour Tracking

There are several existing approaches to contour track-
ing. The deformable template approach (Yuille et al.,
1992; Lipson et al., 1990) involves finding a model
parameterization for the contours of the object to be
tracked, and matching this representation with succes-
sive images in the video stream in order to detect the
contours of interest. The goal is to find the deformable
template which best matches the image at hand, i.e.,
to find the values of the parametersr which mini-
mize an energy function. The energy is the sum of
two terms,E(r ; I)= Eg(r)+ Em(r ; I) whereI is the
image.Eg(r), the “geometric energy,” takes on small
values for contours whose shape is more likely to be
observed in reality;Em(r ; I), the “matching energy,”
takes on small values when the contour described byr
corresponds well to a contour found in the image. Thus,
minimizing the total energy of the contourE(r ; I)
involves a balance between finding a contour which
matches the image well with finding a contour which
is likely to be found in practice. The problem, as it has
been posed above is a static one, which corresponds to
finding an object contour in a single image. For track-
ing contours over time, this method may be adapted to
a dynamic setting by simply repeating the procedure on
a frame by frame basis. If the minimization technique
requires an initial condition (e.g. gradient descent), the
contour from the previous frame may be used.

The elastic snake approach, first presented in Kass
et al. (1987) and subsequently elaborated in Amini et al.
(1998) and Xu et al. (1993) also features an energy
minimization problem. Here the energy is a functional
of the contour itself (rather than parameters) and has
three terms. The first two terms represent elastic and
tensile energy, and ensure that the snake is smooth;
the third term is an image-dependent term which
pushes the snake towards the feature of interest. In an
effort to find contours, an image-dependent term which
depends on edge strength, such as‖∇ I ‖2, may be desir-
able. By performing gradient descent in order to mini-
mize the functional, changing image energy (which re-
sults from having multiple images) may be accounted
for; that is, the algorithm is easily adapted to solving
the tracking problem.

There are several papers which present Kalman
trackers; the most notable are Blake et al. (1993, 1995)
and Brockett and Blake (1994). The philosophy of the
Kalman tracker is the same as that of the standard
Kalman filter. In particular, it requires a learned lin-
ear stochastic dynamical model which describes the
evolution of the contour to be tracked. Learning takes
place prior to running. Assuming that the observation
of the contour has been corrupted by Gaussian noise,
the conditional density of the contour given all past ob-
servations may be found, and then used to estimate the
contour position.

The condensation tracker, as outlined in Blake and
Isard (1988), is similar in spirit to the Kalman tracker, in
that it assumes a dynamical model describing contour
motion is known, and that imprecise observations are
made. However, it is more general: neither the dynam-
ical system nor the observation process need be linear.
In particular, the dynamical model may be given by
a probability densityp(ct | ct−1), and the observation
process by another densityp(c̃t | ct). The conditional
densityp(ct | c̃t , . . . , c̃1) may be propagated forward
in time using the numerical technique known as the
“condensation” method; this density may then be used
for estimating the current contour, for example through
maximum likelihood estimation. The advantage of this
approach over the Kalman filter is that the observation
process given byp(c̃t | ct)may now model clutter. That
is, the density may be multimodal, rather than the uni-
modal observations employed with the Kalman filter.
As a result, multiple hypotheses may be simultaneously
entertained, and robustness to clutter is expected.

2.2. Deficiencies in Existing Trackers

The deformable template approach has two principal
problems. First, for any given application, it must be
hand-crafted; that is, if it is desired to track the motion
of lips, two specific energy functions that are appropri-
ate for lips must be designed. This process can involve
a good deal of trial and error, and is a clear drawback
to a general contour-tracker. Second, while the method
is useful for locating contours in a single image, it is
very slow at tracking contours through multiple im-
ages. The snake method circumvents the first problem;
snakes will in principal find the edges of any object
whose outlines are a continuous closed curve. How-
ever, the method istoo general in the sense that its
modes of detection are not tuned to the motion of any
particular object. In this way, it is not particularly effi-
cient. Furthermore, like deformable templates, elastic

Contour Tracking in Clutter 175

snakes also suffer from problems of slowness in track-
ing contours through multiples images.

The Kalman tracker does not suffer from any of the
problems mentioned above. It has the right level of
generality in that it need not be hand-crafted for any
specific application and a dynamical system for the rel-
evant class of contours can be learned. Furthermore, the
process of finding observations is fast, so that the whole
algorithm is much quicker than either of the above tech-
niques. However, the Kalman tracker ignores a basic
problem in tracking: the presence of clutter. Clutter can
come from detected edges which are either extraneous
to the object, or intrinsic to it. In either case, there are of-
ten multiple edges, and there is no single observation;
rather, there are a multiplicity of observed contours.
This problem is dealt with in turn by the condensa-
tion tracker, which is designed specifically to deal with
clutter, and indeed shows robustness to clutter in the
experimental context. It seems, therefore, that the con-
densation tracker should be sufficient for most tracking
applications. Why, then, propose an alternative?

The major difference between the condensation ap-
proach and the proposed approach is that the former re-
quires a dynamical model of the object being tracked,
whereas the latter does not. In particular, the subset
tracker only uses the more basic information concerned
with theshapeor geometryof the object’s silhouette.
The theoretical reason for focusing on this more basic
information is that there are many situations in which
the available training curves, which are used for learn-
ing prior to the running the algorithm, may be sufficient
for learning the space in which object “lives,” but are
insufficient for learning the dynamics of the object. (Of
course, such a theoretical assertion has no teeth without
experimental results to support it; these are provided in
Section 5.) Despite this difference, the subset tracker
possesses the main advantages presented by the con-
densation approach. Like the condensation tracker, the
subset tracker maintains the right level of knowledge
of the particular object which it is tracking, knowledge
which is learned rather than constructed by hand. Fur-
ther, it too is specifically designed to be resistant to
clutter. But in ignoring dynamical information, an en-
tirely new framework is required, one which is explored
in the following sections.

3. Overview, Notation and Terminology

3.1. Overview

Before entering into a detailed discussion of notation,
it is worthwhile understanding the basic approach to

Figure 1. An image and its corresponding edge-map, illustrating
clutter.

contour tracking that will be presented in this paper.
In a given frame, the previous frame’s contour is taken
as a starting point for searching for the edges of the
new contour. At each of the sites along which search is
carried out, several edges may be detected; this is due
to the fact that the object being tracked is not the only
object present in the scene. That is, there is clutter, and
this is what makes the problem difficult. For if there
were only one edge detected per site, then the con-
tour in the current frame is effectively detected without
any further computation. It is worth noting that even
if the background is fairly pristine, and the only ob-
ject present is the one being tracked, spurious edges
may still be detected due to the inaccuracy of the edge-
detection algorithms, the noise present in the image
(due to quantization, blooming, and so on), and due to
the fact that the object may possess many interior edges
if is not monochrome. All of these difficulties may be
seen in Fig. 1, which shows the image and correspond-
ing edge-map from a male speaker. The goal of the
algorithm is to decide which of the edges detected are
the correct ones, that is which correspond to the con-
tour and which are due to clutter. More specifically, the
goal is to find the contour which runs through at most
one edge at each site and best describes the contour of
the object being tracked. The phrase “at most” is used
due to the fact that it may be possible that the correct
edge may not be detected at all.

Contour tracking in clutter, then, is about deciding
which of a possibly large number of potential contours
discovered by edge-detection best describes the con-
tour of the object being tracked. The proposed tracker
makes this decision by finding the contour whose shape
is closest to that of the object under study, where the
possible shapes of this object have been learned before-
hand. Before delving into the details of this decision-
making procedure, it is necessary to discuss issues of
notation. The two basic elements of the algorithm are
edges and contours; terminology for each of these will
be gone into in turn.

176 Freedman and Brandstein

3.2. Edge Notation

The N equally-spaced points along the previous
frame’s contour in whose neighbourhood search is ini-
tiated are referred to assites. At each site, several edges
are detected; thesetof edges detected at thenth site is
denotedEn, and an element of this set is denoteden.
Note thatEn may be empty if no edges are detected
at a particular site. Anedge-vectoris an N-vector of
points one from each sitee= (e1, . . . ,eN). In fact, an
edge-vector can either be seen as anN-vector if each
element is taken to be a point, or a 2N-vector if each
element is taken to be a real number. Given an edge-
vector, a contour may be interpolated through its con-
stituent points; this contour is referred to as anobserved
curve. The particular method of interpolation which is
used relies on the specific formalism used for describ-
ing curves, and is detailed in Appendix D. The generic
observed curve is denotedε, and the set of such objects
is denotedE .

3.3. Contour Notation

A contourc is a continuous functionc : [−1, 1]→<2,
which will often be writtenc= (cx, cy). The space of
all contours will be denotedC. CD is defined to be the
space of contours which can be expressed as a pair
of expansions in the firstD Legendre polynomials. Of
course,CD ⊂ C. Recall that Legendre polynomials may
be written asPi (s)=

∑D
j=1 Gi j sj−1 for i = 1, . . . , D,

whereG is a D× D matrix whose properties are re-
viewed in Appendix A; they are defined ons∈ [−1, 1]
(hence the curious choice of domain for contours). The
Legendre polynomials are preferable to other sets of
orthogonal functions, such as Bessel functions, due
to their explicit expressions which make computations
easily amenable to the basic operations of linear alge-
bra. In addition, their orthogonality simplifies various
aspects of the algorithms which would be made diffi-
cult if non-orthogonal functions, such as splines, were
used. A contour inCD may be identified entirely by 2D
real numbers; namely, if

cx(s) =
D∑

i=1

γx,i Pi (s) and cy(s) =
D∑

i=1

γy,i Pi (s)

then c(s)= (cx(s), cy(s)) is completely specified by
the two D-vectorsγx andγy. A compact notation is
γ = (γx, γy), in which γ so specified is taken to be
a 2D column vector. The relationship betweenc andγ
may be written more concisely asc(s)= (γ T

x G Z(s),
γ T

y G Z(s)) where Z(s)= [s0, s1, . . . , sD−1]T . (Note:

s is taken to be an affine function of arc-length; that
is, if ŝ∈ [0, L] is the arc-length, thens is given by
s= 2ŝ/L − 1.)

A typical object will give rise to aclassof contours:
most objects may both transform in a rigid fashion, and
deform in a non-rigid fashion. Each such transforma-
tion will lead to a new contour. The goal is to find a
model which will capture all of these contours. The
idea which is put forward here is that the most concise
way to do this is through the use of a subsetC of C,
the contour space. This subset captures all of the pos-
sible contours which can arise from different defor-
mations of the object under consideration. In fact, the
subset of interest will be taken to be a subset ofCD; in
particular, the value ofD is fixed at some value high
enough to capture all of the detail in the contours of the
object of interest. In this case, the problem of finding
an appropriate subset of the space of contours has been
reduced to finding a subset of<2D. Such a subset may
be broken down into two parts: one comprising similar-
ity transformations, and a second comprising non-rigid
deformations. It is worth making this distinction, as a
well developed mathematical theory exists for similar-
ity transformations, so these need not be learned from
training contours. By contrast, non-rigid deformations
vary from object to object, and so must be learned.
Begin by discussing this learning procedure.

In order to learn a subset, from training con-
tours{γk}Kk=1, comprising non-rigid deformations, the
Karhunen-Loeve transform (Cootes et al., 1994) may
be employed. If the mean vector is̄γ , and the or-
thogonal vectors are{pi }qi=1 (whereq≤ 2D and is of-
ten much smaller than 2D), then the subset of<2D

may be taken to be the “shifted linear” space0={γ :
γ = δ+ γ̄ , δ ∈ 1} where1= span{p1, . . . , pq}. The
problem with this approach is that the spaceC is not
compact. Compactness is a desirable property for the
contour subset, as the subset should be bounded; other-
wise, the subset will contain contour shapes which do
not correspond to the object of interest. (This can be
easily understood by examining the contour given by
γ̄ +ψ1 p1 asψ1 →∞. Alternatively, it may be noted
that all contours of relevance must be contained with
the image, which has a fixed and bounded domain.) The
Karhunen-Loeve procedure is thus modified to give a
compact subset. Specifically, the subset0 is emended
to be

0 =
{
γ : γ =

q∑
i=1

ψi pi + γ̄ , |ψi | ≤ bi

}

Contour Tracking in Clutter 177

which is itself compact and induces a compactC. The
vectorspi and the value ofq are found as before, and the
bounds{bi }qi=1 are found bybi = max1≤k≤K |γ T

k pi |.
While it might seem more natural, within the KL con-
text, to take0 to be an ellipsoid rather than a polytope,
the latter models the contour subset sufficiently well in
practice, and makes computations simpler. The follow-
ing formalism usefully summarizes:

C = {c ∈ CD : c(·) = (γ T
x G Z(·), γ T

y G Z(·)), γ ∈ 0}
0 = {γ ∈ <2D : γ = pψ + γ̄ , ψ ∈ 9} (1)

9 = {ψ ∈ <q : |ψi | ≤ bi , i = 1, . . . ,q}

wherep is the 2D×q matrix whose columns are the
pi . The key insight gained through this formalism is
that any contour of the object of interest is specified
by aq-dimensional vectorψ which is a member of the
compact set9.

3.4. Similarity Transformations

A method for dealing with similarity transformations
may now be discussed. Any euclidean similarity trans-
formation may be represented asγ→W(γ)v where

W(γ) =
[
µ 0 γx −γy

0 µ γy γx

]

and where0 = [0, 0, . . .0]T , µ is the first column of
(GT)−1, andv ∈ <4. (For a derivation of the above
transformation, see Appendix B.) At any given frame
t , V t , the set of possible similarity transformations, is
<4. However, suppose that the camera is fixed, and it
is known that the object itself may only translate (in-
cluding translation towards the camera) and rotate at a
certain rate. ThenV t may be closely approximated by
its superset̃V t ={v : vt

i ≤ vi ≤ v̄t
i , i = 1, . . . ,4} where

the values of bounds, in terms of more basic quantities,
are given in Appendix C. If there is not too much in-
terframe similarity motion, thenV t will be very close
to Ṽ t .

4. The Tracking Algorithm

Having finished with preliminary definitions and com-
putations, the description of the actual tracking algo-
rithm may be given in detail. As was alluded to in Sec-
tion 3.1, the basic idea is as follows. Given the contour
from the previous frame, the current frame’s image is

searched for edges atN equally-spaced points along
the old contour. Search is in circular regions centered
at each site. At each site, several edges are detected; the
goal of the tracking algorithm is to sort out which of
the edges correspond to the true contour. Framing the
problem in this manner makes it particularly amenable
to tracking in clutter.

4.1. Basic Setup and Objective Function

Following the edge search, data consists of the sets of
edges detected at each site,{En}Nn=1, and through the
compounding of these, the set of observed curves,E .
The tracking algorithm is posed as the solution to a par-
ticular optimization problem, namely the minimization
of the following objective function:

min
ε∈E,c∈C,ω∈Ä

‖c− ωε‖

whereÄ is the set of allowed euclidean similarity trans-
formations, andω is one such transformation. This re-
quires some explanation. The idea is to find the edge-
vector, that is, the list of observed edges, (at most) one
from each site, whose interpolated contour is closest
to the learned contour subsetC. (The manner in which
the these contours are interpolated is discussed in Ap-
pendix D.) Of course, as was discussed in Section 3.3,
C is learned from training contours in a single ori-
entation; thus, euclidean similarity transformations of
the observed curves must be taken into account, which
results in the presence ofω. Note that the norm‖·‖
above is theL2 norm, as has been the case all along.
The particular part of the optimization solution which
is of interest is the minimizingc; in particular,ω−1

mincmin

is taken to be the contour for the current frame.
This optimization problem is peculiar in several

ways. First, it has both continuous and discrete ele-
ments. While the setE is fundamentally discrete, due
to the fact that a finite number of edges are observed,
both c andω are continuous. Furthermore,E is gen-
erated by searching atN sites; since typically a few
edges will be found at each site,E is thusO(mN) in
size (wherem is the geometric mean of the number
of edges found at each site). As a result, exhaustive
search over the discrete part of the problem is ruled
out for any reasonable sizedN. The goal of this sec-
tion, therefore, will be to describe an efficient way to
solve the optimization problem. The basic method will
be as follows. First, an algorithm will be detailed (see
Section 4.2) which enables alocal minimum of the

178 Freedman and Brandstein

Figure 2. The contour tracking algorithm.

function to be found; this algorithm is iterative in na-
ture, and has two distinct steps. Second, an algorithm
for finding a good initial condition is explained; this
initial condition is then fed into the local minimization
routine, which then may result in the global minimum
(and if not, something close to the global minimum).
This latter procedure is referred to as the coarse-to-fine
minimization algorithm, and its details are spelled out
in Section 4.3. The block diagram in Fig. 2 may be
useful in understanding the overall algorithm.

4.2. The Local Minimization Algorithm

The basic approach to minimizing the objective func-
tion is to use two separate algorithms. The first finds a
local minimum; the second finds a “good” initial con-
dition for the local minimization algorithm. In this sec-
tion, the local minimization algorithm will be analyzed.

In order to find a local minimum, a gradient descent
algorithm may not be employed; this is due to the par-
tially discrete nature of the problem. In any event, gra-
dient descent is often quite slow. Instead, an iterative
procedure is proposed which is guaranteed to converge
to the local minimum. In the procedure shown in Fig. 3,
t1 is the time-step of the iterations, as opposed tot which
is the overall time (i.e., which frame the algorithm has
reached).

Proof: By inspection, each step of the procedure
reduces the value of the function‖c−ωε‖ from its
previous value. Furthermore, the function‖c−ωε‖ is
bounded from below by 0. Thus, this iterative proce-
dure must lead to a local minimum. 2

As the algorithm stands, not much has been gained,
since it is not known how to actually implement step 1

Figure 3. The local minimization algorithm.

or step 2. Note first that the problem may be written as

min
ε∈E t ,γ∈0,v∈Ṽ t

‖γ −W(ε)v‖

using the results of Section 3.4, where now the norm
‖·‖ is the usual euclidean norm in<2D. A method of
attack for step 1 may now be elucidated.

4.2.1. Step 1. Step 1 may be solved itself via an it-
erative procedure. Again, this procedure will have its
own time-scalet2, which is subordinate to botht andt1.
However, for ease of notation, both superscriptst and
t1 will be suppressed. The algorithm can be expressed
using pseudo-code, as is shown in Fig. 4.

The proof that this procedure does indeed lead to
the required minimum is included in Appendix E. Two
comments are in order. First, due to the fact that the
iterative procedure leads to a global minimum, the
initial conditions inγ and v are relevant only inso-
far as the speed of convergence is concerned. Sec-
ond, it may now be clear why the use of orthogo-
nal polynomials is quite helpful. Solving the problem
minγ∈0,v∈Ṽ t ‖γ −W(εt,t1−1)v‖ would be made much
more complex if the constraints onψ were not|ψi | ≤
bi , but ratherb≤ Aψ ≤ b̄.

4.2.2. Step 2. Step 2 may now be discussed. As it
stands, step 2 seems to require an exhaustive search,
in that all interpolated edge-vectors must be tried out.
This is anO(mN) operation, and is thus not reasonable.
Instead, the following approach may be used:

‖c− ωε‖2 =
∫ 1

−1
‖c(s)− (ωε)(s)‖2 ds

=
N∑

n=1

∫ −1+2 n
N

−1+2n−1
N

‖c(s)− (ωε)(s)‖2 ds

≈ 2

N

N∑
n=1

‖c(sn)− ωen‖2

Contour Tracking in Clutter 179

Figure 4. The step 1 algorithm.

wheresn=−1+ 2(n−1/2)/N anden is thenth point
of the edge-vectore= (e1, . . . ,eN) from whichε was
interpolated. The approximation is valid as long asN
is large, so thatc does not vary much too much over the
intervals of length 2/N. If the approximation is valid,
the problem

min
ε∈E
‖c− ωε‖

is equivalent to

min
e1∈E1,...,eN∈EN

2

N

N∑
n=1

‖c(sn)− ωen‖2

= 2

N

N∑
n=1

[
min
en∈En

‖c(sn)− ωen‖2
]

in that both problems will give rise to the same edge-
vectoreand hence the same observed curveε. The lat-

ter problem is anO(N) problem: it is a simple matter
to determine, at each site, which of the edges (prop-
erly oriented byω) is the closest to the pointc(sn).
Of course all edges must be transformed byω before-
hand, but this is also just anO(N) operation. Thus, it
has been demonstrated that both steps of the iterative
procedure for finding a local minimum can be imple-
mented efficiently.

4.3. The Coarse-to-Fine Minimization Algorithm

Local minimization of the objective function is useful,
but as is always the case in minimization problems,
what is really desired is the global minimum. What
is suggested is not a way to reach this global mini-
mum with certainty, but rather, a way to cleverly pick
an initial conditionεt,0 for the local minimization rou-
tine. This initial condition picking is referred to as the
coarse-to-fine (CTF) minimization algorithm.

The idea of the CTF algorithm is to initially pick
edges at sites which are spaced far apart, and to sub-
sequently fill in the sites which lie between the initial
sites. In this sense, the algorithm is indeed coarse-to-
fine: it begins by finding a reasonable guess for the con-
tour on a coarse scale, and then refines this by filling
in the finer scales. Suppose there are integersd andM
such thatN= dM + 1. There areM consecutive stages
of decisions. Letχm

i j = id M−m+ (j−1)dM−m+1+ 1. In
stage 1, a single decision is made, namely, which edges
at the sites{χ1

i 1}di=0 should be selected. The edges are
selected as4(χ1

01, . . . , χ
1
d1), where4 is defined by

4(π1, . . . , πr)

= argmin
{eπi ∈Eπi }ri=1

(
min

h∈H(π1,...,πr)

∥∥[eπ1; . . . ; eπr

]− h
∥∥)

In the above definition,π1, . . . , πr are anyr sites,
and H(π1, . . . , πr) is the set of all possible configu-
rations of points at such sites, as can be derived from
the learned subsetC (see Appendix F for more de-
tails). That is,4 is the set of pointseπ1, . . . ,eπr at sites
π1, . . . , πr which, out of all of the observed points at
the relevant sites, are closest to those which have been
learned. Using knowledge ofH , the inner minimization
problem can be solved as is shown in Appendix F.

In the mth stage,m= 2, . . . ,M , there aredm−1

decisions made. Thej th such decisions involves select-
ing edges at the sites{χm

i j }d−1
i=1 , as4̂(χm

1 j , . . . , χ
m
d−1, j ;

180 Freedman and Brandstein

χm
0 j , χ

m
d j), where4̂ is defined by

4̂(π2, . . . , πr−1;π1, πr)

= argmin
{eπi ∈Eπi }r−1

i=2

(
min

h∈H(π1,...,πr)

∥∥[eπ1; . . . ; eπr

]− h
∥∥)

That is,eπ1 and eπr are fixed, as they have been se-
lected in a previous stage. Thus edges are selected
in a coarse-to-fine manner, and there are a total of∑M−1

i=0 di = (dM − 1)/(d− 1)< N/(d− 1) decisions.
Since the time for each decision isO(1), the algo-
rithm’s overall running time isO(N).

A numerical example will make this more concrete.
SupposeN= 43+ 1= 65 sites; then there are 3 stages
of decisions. In the first stage, a single decision is made:
the choice of edges at sites 1, 17, 33, 49, and 65 simulta-
neously. They are chosen as4(1, 17, 33, 49, 65). The
edges chosen at these sites are then fixed for the re-
mainder of the procedure, i.e. for the final two stages.
In the second stage, there are four decisions made. The
first decision involves the choice of edges at sites 5,
9, and 13, holding the edges chosen at sites 1 and 17
(from the first stage) constant. These sites are chosen
as4̂(5, 9, 13; 1, 17). The second decision involves the
choice of edges at sites 21, 25, 29, holding the edges
chosen at sites 17 and 33 constant. The third decision
involves the choice of edges at sites 37, 41, 45 with
edges at sites 33 and 49 as constant; the fourth deci-
sion picks out edges at sites 53, 57, and 61 with edges
at sites 49 and 65 constant. For the third stage, the
edges picked out in the first two stages are held fixed.
The third stage involves sixteen decisions. The first of
these picks out edges at sites 2, 3, and 4 holding the
edges at sites 1 and 5 as constant. The sixteenth picks
out edges at site 62, 63, and 64 while holding the edges
at sites 61 and 65 as constant. In this way, edges at all
65 sites are chosen in a coarse to fine manner.

4.4. Practical Considerations

The following practical issues arise in the implemen-
tation of the algorithm. Edge-detection takes place in
two steps. First,∇2G with threshholding is performed,
yielding a binary image. Second, morphological thin-
ning is performed on the binary image, leading to
the edge-map. The use of the morphological operation
makes the whole process quite invariant to the choice
of threshhold. Many algorithms, such as Blake et al.
(1993) and Blake and Isard (1998), use edge search

which is normal to the old contour, in order to avoid
the “aperture problem.” However, normal search along
these lines frequently results in missed edges, particu-
larly in regions of high curvature, or if the frame rate is
relatively low. In this work, the edge search is con-
ducted in circular regions aroundN equally-spaced
points of the old contour. The size of the search region
varies at each point, and is learned from the training
contours: the largest distance between the same site in
any successive pair of training contours is taken to be
the radius of the search region for that site. This value
can be enlarged slightly to take into account the max-
imum allowed interframe euclidean similarity motion,
but in practice this makes little difference.

A problem which arises in learningC is the fol-
lowing. It is desired that the object be in one specific
orientation, so that no euclidean similarity transforma-
tions are captured by the learned subset (only non-rigid
deformations are so captured). However, this may be
difficult to ensure in the case of any given application.
For example, in the application to be discussed in the
following section, a speaker’s lips are to be tracked.
In order to acquire the training contours without extra
motion due to euclidean similarity transformations, the
speaker must keep her head still at all times; practically,
this is quite difficult. However, it is not unreasonable
for this to occur over a short time-period, say the first
two seconds. Suppose, then, there areK training con-
tours, of which the firstK̄ are in a fixed orientation. In
order to transform the framesk> K̄ so that they are
in the same orientation as the firstK , the following
problem is solved:

γ tr
k = min

v∈<4,1≤k′≤K̄
‖γk′−W(γk)v‖ = min

1≤k′≤K̄
‖Q(γk)γk′ ‖

whereQ= I −W(WT W)−1WT .
Another consideration has to do with issues of speed

in implementing the step 1 algorithm. Rather than find-
ing v initially, the algorithm assumes thatv is the same
as it was last frame, and focuses on findingc. Once
this has been done,c andv are found simultaneously.
A similar operation is performed in the case of CTF
minimization: the euclidean similarity parameters are
taken to have their values from the previous frame.

An interesting issue may arise in the detection of
edges. It is possible that at a given site, no edges are
detected; this can be due to the fact that the thresh-
hold for edge-detection may be set too high. In this
case, there is no problem, since no edge will have to
be chosen at that particular site. However, a problem

Contour Tracking in Clutter 181

can arise if the correct edge is undetected, but incorrect
edges are. In this case, the optimal thing is to select
no edge at that particular site. In step 2 of the local
minimization routine, when is such a “null” edge se-
lected? The criterion that is employed is the following:
if interpolating between the edges chosen at sitesn− 1
andn+ 1 yields a choice which is closer toc(sn) than
any of the observed edges inEn do, then the edge at
site n is chosen to be null. The difficulty is that now,
edges at multiple sites must be selected simultaneously.
This problem may be dealt with through the use of a
dynamic programming algorithm.

5. Experimental Results

Three sets of results are presented to illustrate the ef-
fectiveness of the proposed tracker; a summary is given
in Table 1. In the first experiment, the lips of a female
speaker were tracked. The speaker was wearing lipstick
in order to highlight the lips; in addition, the edge-
map was generated from the green portion of the RGB
colour image to further improve contrast. Nonetheless,
the edges of lips are difficult to detect, as can be seen
in Fig. 5. Clutter in this case is due to the fact that a
low edge-detection threshhold must be employed, in
order to actually find the lip-edges; in so doing, many
extraneous (often spurious) edges are detected as well.
Furthermore, over the relevant search range the lips
interfere with each other. Nonetheless, the tracker suc-
ceeds, as can be seen in Fig. 5. Indeed, the tracker is
correct 94% of the time, and tracks for a 10 second se-
quence. Particularly important is that the tracker is able
to recover from errors; see Fig. 6. No results are avail-
able on the speed of the algorithm; this is because the
algorithm has been implemented in MATLAB rather
than C, and thus the execution is considerably slower
than it would be otherwise (due to the fact that MAT-
LAB is interpreted).

In the second experiment, the lips of a male speaker
were tracked. Two aspects of this experiment differen-
tiate it from the previous one. First, there is far more
clutter: the speaker is not wearing lipstick, possesses a

Table 1. Summary of the experiments.

Experiment N D Video rate Resolution Training sequence Running sequence

Lips 1 80 20 13 Hz 320 by 240 200 frames= 15.4 s 130 frames= 10.0 s

Lips 2 80 20 13 Hz 320 by 240 (same as Lips 1) 86 frames= 6.6 s

Finger 80 20 30 Hz 320 by 240 81 frames= 2.7 s 202 frames= 6.7 s

Figure 5. Tracking a speaker’s lips.

Figure 6. Recovering from mistakes.

beard and moustache, and is filmed in relatively poor
lighting. Second, the training sequence from the first
experiment is used to train the tracker. The reason for
the latter is that a successful outcome would hold out the
possibility that the tracker need not be retrained in the
case of each particular speaker (for, say, audio-visual
speech recognition), and would thus be more robust.
Given these two differentiating factors, it would be ex-
pected that the tracker would not perform as well as in
the first experiment, and indeed it does not. The contour
estimates are not nearly as crisp, and the tracker makes
more mistakes; see Fig. 7. Nonetheless, the tracker is
able to follow the lips of the male speaker for the entire
6.6 second sequence.

In the third experiment, a moving finger is tracked.
Clutter is in the form of both the background writing
(much of which is small, and therefore leads to many
extraneous edges) as well as the self-clutter of the dou-
bled over finger. The motion of the finger illustrates two

182 Freedman and Brandstein

Figure 7. Tracking a more challenging speaker’s lips.

Figure 8. Tracking a flexing and translating finger.

different kinds of tracking: flexing, which is a highly
nonrigid type of motion, and translation. Furthermore,
the motion is relatively fast (flexing takes just over half
a second). The tracker sucessfully follows the finger
for 202 frames, or 6.7 seconds. Results are shown in
Fig. 8.

For purposes of comparison, the condensation
tracker was also run on part of the third sequence. In
particular, the condensation tracker was trained on the
same sequence as the subset tracker, and the reduced
dimension derived from applying the Karhunen Loeve
transform (in this case, ten dimensions) was used as the
space to learn the dynamical model for flexing. Results
of running the condensation algorithm on the flexing
portion of the finger motion are shown in Fig. 9, with
the corresponding frames of the results from the sub-
set tracker shown in Fig. 10. Although both trackers
succeed in tracking for the entire 24 frame (0.8 sec-
ond) sequence, the contours from the subset tracker
are demonstrably clearer and crisper than those from
the condensation tracker. Further insight into a com-
parison of the two trackers is obtained by examining a
20 frame (0.7 second) sequence in which the finger is

Figure 9. Condensation tracker results.

Figure 10. Subset tracker results.

Figure 11. Comparing results on a still finger.

almost completely still. As can be seen in Fig. 11, the
subset tracker is successful in finding the static finger;
the condensation tracker, by contrast, is much less suc-
cessful. In particular, while the condensation tracker
never entirely loses lock, it gives results which do not
correspond very closely to the finger’s true silhouette.
This is due to the fact that the dynamical model used
in condensation is learned for a flexing motion, and no
“pause” motion is included in the training sequence.
While it may be argued that a dynamical model could
include both types of motion (indeed, possibly such a

Contour Tracking in Clutter 183

switching model could even be learned from a larger
training sequence), this misses the point. The advan-
tage of an algorithm which makes no use of dynamical
models ispreciselythat the exact type of motion that
will be encountered in a given application often cannot
be anticipated. If all modes of motion could be en-
tirely anticipated, then the tracking problem would be
a much simpler one. In this case, one very simple non-
learned mode, namely no motion at all, was tracked; the
condensation tracker is unable to deal with this, while
the subset tracker, which does not rely on dynamics,
is successful. (As was noted above, speed results are
not available due to the use of MATLAB rather than
C for implementation. In this case, the subset tracker
was approximately three times faster per frame than the
condensation tracker; however, it is not known whether
this difference reflects any real speed considerations, or
whether it is simply due to MATLAB artifacts.)

The objection may be raised that a dynamical model
is actually built into the assumptions of the subset
tracker, namely, that the interframe euclidean similarity
motion is restricted to lie in a certain setṼ t (see Sec-
tion 3.4). However, this is simply a restriction of the
form ‖velocity‖ ≤ some constant; this is a very mild,
non-restrictive form of dynamical model. Any tracker
must have some dynamical assumptions built in: the
object is assumed not to move all that much between
frames, and is assumed to stay within the image. These
assumptions, however, do not come close to defining
a full-fledged dynamical model of the type that is re-
quired for effective tracking using a condensation-type
algorithm.

Full video sequences of the first and third ex-
periments can be viewed at web-site http://himmel.
hrl.harvard. edu/daniel/research.html.

6. Summary and Conclusions

A new approach to tracking the contours of a moving
object has been presented. In this approach, a subset of
curve space is learned beforehand, and it is this type of
learning which differentiates the current tracker from
other trackers. In particular, no dynamical knowledge
is assumed. The tracking problem is posed as a min-
imization problem, which attempts to find the curve,
constructed from edge-points in the image, which is
closest to the learned set of curves. In this way, the al-
gorithm chooses a curve in the image which is most like
the object being tracked. Difficulties in solving this op-
timization problem arise due to the combined discrete

(observed curve)—continuous (learned curve) nature
of the problem, as well as the fact that the discrete set
is huge. These problems are circumvented through the
use of a fast, iterative, local minimization algorithm,
as well as a coarse-to-fine algorithm for picking out a
reasonable initial condition for the local minimization
routine. Results demonstrate the efficacy of the tracker
in several different experiments; further, advantages of
not relying on a learned dynamical model are illus-
trated, in the superior performance of the subset tracker
over a condensation tracker.

There are several directions for future research. First,
a more general learning method, in which the learned
subset of a curve space is represented as a generic,
finite-dimensional manifold, could be developed. This
would allow for more accurate shape representation
than is possible with the current method (a polytope
subset of a linear space derived from applying the KLT).
Second, a global optimization algorithm might be de-
veloped, thereby obviating the need for the coarse-to-
fine algorithm. The latter is a reasonable heuristic, but
has no theoretical guarantees attached to it. A related
topic for research would be development of complex-
ity bounds on the efficiency of the algorithm. Finally, it
might be useful to develop a method for automatically
setting the threshhold level in the edge-detection rou-
tines, thereby allowing the tracker to adapt to changing
lighting conditions.

Appendix A: Properties of Legendre Polynomials

The Legendre polynomials are denotedPi (s), i =
1, 2, . . . , and are defined ons ∈ [−1, 1]. Note that the
convention that is used here is slightly different from
the standard convention. Ordinarily, the polynomial in-
dex begins at 0; here the index is shifted up by one. In
addition, the polynomials are taken to be normalized
to unity norm, also counter to convention. TheD × D
matrixG contains all of the relevant information about
the firstD polynomials, as they are defined by

Pi (s) =
D∑

j=1

Gi j s
j−1 i = 1, . . . , D

G is defined by the following set of equations: letF be
a D× D matrix, with

F11 = 1

Fii = ai Fi−1,i−1 i > 1

184 Freedman and Brandstein

Fi,i−1 = 0 i > 1

Fi, j−2 = bi j Fi j j = i, i − 1, . . . ,3 or 4

Fi j = 0 j > i

whereai = 2i−3
i−1 andbi j = (j−2)(j−1)

(j−3)(j−2)−(i−1)i . ThenG is
given by

Gi j =
√

2i − 1

2
Fi j

Appendix B: Derivation of the Euclidean
Similarity Transformation for Legendre
Polynomials

The euclidean similarity transformation for a point in
<2, P= [x y]T , is given by

P→ Wp(P)v

where

Wp(P) =
[

1 0 x −y

0 1 y x

]

with v ∈ <4; see, for example, Blake (1998a). Letting
the point of interest beP= [γ T

x G Z(s)γ T
y G Z(s)], then

thex-coordinate transforms as

γ̂ T G Z(s) = v1+
(
γ T

x G Z(s)
)
v3+

(
γ T

x G Z(s)
)
v4

This gives that

D∑
j=1

(
D∑

i=1

Gi j γ̂x,i

)
sj−1

=
D∑

j=1

(
D∑

i=1

Gi j γx,i v3−
D∑

i=1

Gi j γy,i v4+ v1δ j,1

)
sj−1

whereδkl is the Kronecker delta function. Since the
above equation must hold for alls ∈ [−1, 1], it must
hold true separately for each power ofs, and thus with
a little bit of manipulation,

GT γ̂x = (GTγx)v3− (GTγy)v4+ v1[10 . . .0]T

Therefore,

γ̂x = v3γx − v4γy + v1µ

whereµ is the first column of(GT)−1. A similar equa-
tion can be derived for̂γy, thus yielding the transfor-
mation matrix

W(γ) =
[
µ 0 γx −γy

0 µ γy γx

]

where0= [0, 0, . . .0]T .

Appendix C: Euclidean Similarity Bounds

The bounds are given by:

v
¯
t
1 = (1− σ t−1(1+1σ)c̄t−1)x̄t−1

+ σ t−1(1+1σ)−1s
¯
t−1ȳt−1+ τ t−1

x −1τx

v̄t
1 = (1− σ t−1(1+1σ)−1c

¯
t−1)x̄t−1

+ σ t−1(1+1σ)s̄t−1ȳt−1+ τ t−1
x +1τx

v
¯
t
2 = −σ t−1(1+1σ)s̄t−1x̄t−1

+ (1− σ t−1(1+1σ)c̄t−1)ȳt−1+ τ t−1
y −1τy

v̄t
2 = −σ t−1(1+1σ)−1s

¯
t−1x̄t−1

+ (1− σ t−1(1+1σ)−1c
¯
t−1)ȳt−1+ τ t−1

y +1τy

v
¯
t
3 = σ t−1(1+1σ)−1c

¯
t−1

v̄t
3 = σ t−1(1+1σ)c̄t−1

v
¯
t
4 = σ t−1(1+1σ)−1s

¯
t−1

v̄t
4 = σ t−1(1+1σ)s̄t−1

where

c
¯
t−1 = min

θ∈2t
cosθ c̄t−1 = max

θ∈2t
cosθ

s
¯
t−1 = min

θ∈2t
sinθ s̄t−1 = max

θ∈2t
sinθ

and2t = [θ t−1−1θ, θ t−1+1θ].

Appendix D: Interpolation of Edge-Vectors

The following method is used to interpolate edge-
vectors into observed curves. Suppose that the contours
in question are open; closed contours can be interpo-
lated using a very slight modification. The edge-vector
given is e= (e1, . . . ,eN)= (x1, y1, . . . , xN, yN). The
interpolation problem is set up in the following way:
let εp be the piecewise linear interpolation of the edge-
vectore. Then the goal is to find the contourε ∈ CD

Contour Tracking in Clutter 185

which is closest toεp, i.e., which minimizes

‖ε − εp‖

=
√∫ 1

−1
[(εx(s)− εp,x(s))2+ (εy(s)− εp,y(s))2] ds

This is a relatively easy problem due to the fact that
the Legendre polynomials form an orthonormal set. In
particular, the following familiar result can be used: if
εx(s)=

∑D
i=1 γx,i Pi (s), then

γx,i = 〈εp,x, Pi 〉 =
∫ 1

−1
εp,x(s)Pi (s) ds

and similarly forγy,i . Focus solely on thex-part of
the contour; they-part will follow analogously. Let
s1= 0 andsn= sn−1+

√
(xn− xn−1)2+ (yn− yn−1)2,

n= 2, . . . , N; this is the arc-length at each of the ver-
tices of the piecewise linear interpolation. Thus, the
piecewise linear interpolation may be written sepa-
rately for N− 1 pieces (n= 1, . . . , N− 1):

εp,x(s) = αx,n + βx,ns for sn ≤ s ≤ sn+1

where

αx,n = xnsn+1− xn+1sn

sn+1− sn
, βx,n = xn+1− xn

sn+1− sn

Let A andB be D × (N − 1) matrices given by

Ai j = (sj+1− sj)
i

i
, Bi j = (sj+1− sj)

i+1

i + 1

Further, letαx be the column vector withN−1 entries
αx,1, . . . αx,N−1 and similarly forβx. Then the follow-
ing relation may be shown to hold:

γx = G(Aαx + Bβx)

γy may be found by exact analogy.

Appendix E: Proof of Iterative Algorithm
for Step 1

Proof: First, show thatγ̃ t,t1 = limt2→∞ γ
t,t1,t2 and

ṽt,t1 = limt2→∞ v
t,t1,t2 represent a local minimum of

the functionJ(γ, v)=‖γ −Wv‖ subject to the con-
straintsγ ∈ 0, v ∈ Ṽ t . Note that:

1. J may be expressed as a function ofψ =
pT (γ − γ̄):

J2(γ, v) = ‖γ −Wv‖2
= ‖pψ + γ̄ −Wv‖2
= ψTUψ − 2ψTu+ uTu

Thus, holdingv andψk, k 6= i constant, then

argmin
|ψi |≤bi

J(γ, v)=
〈(

ui −Uiψ
t2−1+Uiiψ

t2−1
i

)
Uii

〉bi

−bi

which may be shown by simple differentiation. That
is, settingψ t2

i equal to the right-hand side of the
above equation reduces the value ofJ(γ, v), by tak-
ing its minimum with respect toψi .

2. J may be expressed as a function ofv:

J2(γ, v) = ‖Wv − γ ‖2
= vT Rv − 2vTr + r Tr

Thus, holdingψ andvk, k 6= j constant, then

argmin
v
¯

t
j≤v j≤v̄t

j

J(γ, v) =
〈(

r j − Rj v
t2−1+ Rj j v

t2−1
j

)
Rj j

〉v̄t
j

v
¯

t
j

which may be shown by simple differentiation. That
is, settingvt2

j equal to the right-hand side of the
above equation reduces the value ofJ(γ, v), by tak-
ing its minimum with respect tovi .

Finally, note thatJ(γ, v) is bounded from below by 0;
this completes the proof that(γ̃ t,t1, ṽt,t1) constitutes a
local minimum.

It now remains to show that this local minimum con-
stitutes a global minimum. SinceJ(γ, v) is positive and
quadratic in bothγ andv, the unconstrained problem
minγ,v J(γ, v) has a single minimum. By inspection,
adding the constraintsγ ∈ 0 andv ∈ Ṽ t will not affect
the uniqueness of the minimum (unless two minima
have exactly the same value, which does not affect the
following statement). Thus, the local minimum is in
fact a global minimum. 2

Appendix F: CTF Algorithm: The Subset H

Let sπ1, . . . , sπr be the arc-lengths associated with the
sitesπ1, . . . , πr . (The arc-length associated with the

186 Freedman and Brandstein

nth of N sites issn=−1+ 2(n − 1)/(N − 1).) Then
the set of points at the siteπ1 may be written

H(π1) = {h ∈ <2 : h

= [ZT (sπ1)G
Tγx; ZT (sπ1)G

Tγy], γ ∈ 0}

where as is common convention, the semicolon in-
dicates that vectors (in this case scalars) should be
stacked. Extending this to the case of multiple sites
is straightforward:

H(π1, . . . , πr) = {h ∈ <2r : h

= [ST GTγx; ST GTγy], γ ∈ 0}

where S= S(π1, . . . , πr)= [Z(sπ1), . . . , Z(sπr)]. Us-
ing knowledge of the set0 and its implicit definition
in terms of the set9, the above expression forH can
be rewritten as

H(π1, . . . , πr) = {h ∈ <2r : h = Q(π1, . . . , πr)ψ

+q(π1, . . . , πr), ψ ∈ 9}

where

Q(π1, . . . , πr) =
[

ST (π1, . . . , πr)GT px

ST (π1, . . . , πr)GT py

]

and

q(π1, . . . , πr) =
[

ST (π1, . . . , πr)GT γ̄x

ST (π1, . . . , πr)GT γ̄y

]

and px is the top half (firstD columns) ofp, py is the
bottom half, and likewise for̄γx andγ̄y.

In order to solve

min
h∈H(π1,...,πr)

∥∥[eπ1; . . . ; eπr
]− h

∥∥
the problem may be recast as

min
ψ∈9
‖Qψ + q − ζ‖

where ζ = [eπ1; . . . ; eπr] and the arguments ofQ
and q have been suppressed for convenience. (Note
that [eπ1; . . . ; eπr] is shorthand for the vector
[xπ1, . . . , xπr , yπ1, . . . , yπr]

T .) The above minimiza-
tion can be solved for quickly in an iterative manner
along the lines of step 1 of the local minimization prob-
lem. Specifically, the following algorithm may be used:

Let: A = QT Q anda = QT (ζ − q).
t = 1
do

for i = 1 to q

ψ t
i =

〈(
ai − Aiψ

t−1+ Aiiψ
t−1
i

)/
Aii
〉bi

−bi

t ← t + 1
end

until ψ has converged

References

Amini, A., Tehrani, S., and Weymouth, T. 1988. Using dynamic
programming for minimizing the enegy of active contours in the
presence of hard constraints. InProc. 2nd Intern. Conf. Comput.
Vis., pp. 95–99.

Ayache, N., Cohen, I., and Herlin, I. 1992. Medical image tracking.
In Active Vision, A. Blake and A. Yuille (Eds.). Cambridge, MA:
MIT Press, pp. 285–302.

Blake, A. Curwen, R., and Zisserman, A. 1993. A framework for
spatio-temporal control in the tracking of visual contours.Int. J.
Comp. Vis., 11(2):127–145.

Blake, A. and Isard, M. 1998. CONDENSATION—conditional den-
sity propagation for visual tracking.Int. J. Comp. Vis., 29(1):5–28.

Blake, A., Isard, M., and Reynard, D. 1995. Learning to track the
visual motion of contours.Artificial Intelligence78:101–134.

Bregler, C. and Konig, Y. 1994. Eigenlips for robust speech recog-
nition. In Proceedings IEEE ICASSP, Vol. II, pp. 669–672.

Brockett, R. and Blake, A. 1994. Estimating the shape of a moving
contour. InProceedings of the 33rd IEEE Conference on Decision
and Control, pp. 3247–3252.

Cootes, T., Hill, A., Taylor, C., and Haslam, J. 1994. Use of active
shape models for locating structures in medical images.Image and
Vis. Comp., 12(6):355–365.

Dalton, B., Kaucic, R., and Blake, A. 1995. Automatic speechreading
using dynamic contours. InProceedings NATO ASI Conference
on Speechreading by Man and Machine: Models, Systems, and
Applications.

Kass, M., Witkin, A., and Terzopoulos, D. 1987. Snakes: Active
contour models. InProc. 1st Intern. Conf. Comput. Vis., London.

Kaucic, R., Dalton, B., and Blake, A. 1996. Real-time lip tracking
for audio-visual speech recognition application. InProceedings
ECCV, pp. 376–387.

Lipson, P., Yuille, A., O’Keefe, D., Cavanaugh, J., Taafe, J., and
Rosenthal, D. 1990. Deformable templates for feature extraction
from medical images. InProc. 1st Europ. Conf. Comput. Vis.

Luettin, J., Thacker, N., and Beet, S. 1996. Visual speech recog-
nition using active shape models and hidden markov models. In
Proceedings IEEE ICASSP, pp. 817–820.

Mak, M. and Allen, W. 1994. Lip-motion analysis for speech seg-
mentation in noise.Speech Communication14(3):279–296.

Sullivan, G. 1992. Visual interpretation of known objects in con-
strained scenes.Phil. Trans. Roy. Soc. London B337:109–118.

Xu, G., Segawa, E., and Tsuji, S. 1993. Robust active contours with
insensitive parameters. InProc. 4th Intern. Conf. Comput. Vis.,
Berlin.

Yuille, A., Hallinan, P., and Cohen, D. 1992. Feature extraction from
faces using deformable templates.Int. J. Comp. Vis., 8(2):99–112.

