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Abstract—A new algorithm for manifold learning is presented. Given only samples of a finite-dimensional differentiable manifold and

no a priori knowledge of the manifold’s geometry or topology except for its dimension, the goal is to find a description of the manifold.

The learned manifold must approximate the true manifold well, both geometrically and topologically, when the sampling density is

sufficiently high. The proposed algorithm constructs a simplicial complex based on approximations to the tangent bundle of the

manifold. An important property of the algorithm is that its complexity depends on the dimension of the manifold, rather than that of the

embedding space. Successful examples are presented in the cases of learning curves in the plane, curves in space, and surfaces in

space; in addition, a case when the algorithm fails is analyzed.

Index Terms—Machine learning, differentiable manifold, simplicial complex.
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1 INTRODUCTION

THIS paper is concerned with the problem of manifold
learning. Given a sampling of points drawn from a

compact differentiable manifold, the goal is to find a
description of the manifold. More formally, the problem
may be posed as follows:

Manifold Learning Problem. Given a dense sampling X of
some K-dimensional compact C1 manifold F which is
embedded in a Hilbert space Z, construct aK-dimensional

compact manifold R which approximates F well.

Such a formulation is not complete in the sense that many
concepts, such as “good approximation” and “dense
sampling,” remain vague; these issues will be cleared up
in Section 1.2. For the moment, let us focus on practical
applications of manifold learning in order to illustrate the
type of problem we wish to treat.

1.1 Applications

One class of algorithms, drawn from the computer vision
literature, for which manifold learning is useful is the class
of contour trackers. A contour tracker seeks to follow an
object as it moves through a video stream by following its
contour, i.e., the curve which represents its silhouette;
examples include [1], [2], [3], [4]. It is often useful, and
sometimes necessary, for such trackers to have an a priori
model of the dynamics of the object to be tracked. Such a
model may occasionally be known or derived from first
principles, but, in the general case, it is learned from
training data. The model can be specified as a general
stochastic dynamical system in the space of curves;
however, in many cases, it is of great benefit to first restrict

the possible geometries of an object’s contour from the
entirety of curve space to a particular subset, often labeled
the “shape space.” For instance, if we wish to track the
movement of a particular human organ for a medical
application, we will find that our algorithm will profit
tremendously from the knowledge that such an organ has a
fixed range of possible appearances and never looks like,
say, the large intestine. One method for acquiring this
information, i.e., for learning the shape space, is that of
manifold learning; such a scheme will succeed when the
training set is a dense enough sampling of the underlying
manifold. Finally, given the shape space, the dynamical
model may be learned.

Manifold learning might also be employed in recognition
schemes. In order to properly identify an object within an
image, one often needs a good description of the class from
which the object was drawn. Such a class may be well
characterized by a manifold within the “space of objects,”
where the precise mathematical meaning of object space
may vary between recognition applications. Given a proper
training set, manifold learning presents a way of construct-
ing a characterization of the object class.

Additionally, there are a variety of applications for
manifold learning which are not ordinarily construed as
learning problems. One major example is that of surface
reconstruction, which is useful in CAD and computer
graphics; in such a problem, points in IR3 are given and the
desired output is a surface. One use for such an algorithm is
“reverse engineering,” where a machine part is scanned with
a laser range finder and a model of the object’s geometry is
automatically generated. The latter scheme is also pertinent in
the field of graphics and allows for graphical models to be
constructed directly from real objects without modeling.

1.2 Basic Aspects of the Problem

Having posed the problem, some of its challenges may now
be discussed. The key problem in designing a manifold
learning algorithm is that the sample points X are
unorganized. That is, no relationship among the points is
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known beforehand. This difficulty is seen most easily in the
context of what might seem, at first blush, a simple
problem: trying to “learn a curve” embedded in IR2 from
its samples. If the points are organized, i.e., the adjacency
relationship between samples is known, then reconstruction
is completely straightforward. This situation isn’t particu-
larly interesting because it is quite obvious that the more
finely sampled the true manifold is, the closer the
reconstruction will be to the original; this is just a matter
of calculus. However, suppose that the adjacency relation-
ship among the points is not known, as is illustrated in
Fig. 1. In this case, the issue of how to learn the curve is not
at all clear. Should all samples be attached to their nearest
neighbors? This would leave holes, as in Fig. 2. Instead, one
might begin by connecting a single point to its nearest
neighbor and then connecting that point to is nearest
neighbor except for the one already attached, etc.; in this
case, one runs into the problem shown in Fig. 2. It is fairly
easy to think of counterexamples to such simple greedy
schemes. Furthermore, we have been looking at the
“relatively straightforward” case provided by curves
embedded in two dimensions. What of more complex
cases, such as 7-manifolds embedded in IR82 or K-manifolds
embedded in the space of curves? In this case, it is not even
particularly easy to think of heuristic algorithms like the
one mentioned above. As a result, sophisticated algorithms
which possess mathematical properties which are amenable
to analysis must be elaborated if there is to be a chance of
attacking the manifold learning problem.

In this context, we may return to the problem statement
given in Section 1 and clarify some relevant issues. First, the
manifold R is said to approximate the manifold F well if

. R is homeomorphic to F and

. dðR;F Þ is sufficiently small, where d is an appro-
priate metric, such as the symmetric Hausdorff
distance:

dðR;F Þ ¼ max
f2F

min
r2R

kf � rk
� �

þ max
r2R

min
f2F

kf � rk
� �

:

Note that diffeomorphism between R and F is not required;

in fact, the proposed algorithm generates a C0 manifold, in

the form of a simplicial complex. Requiring diffeomorphism

makes the problem more difficult.
The second issue that arises in the problem statement,

and throughout the paper, concerns the idea of sampling

density. There are various possible formalizations of this

concept; perhaps the most useful definition of sampling
density is given in [5] and is based on the notion of local
feature size. The local feature size at a given point on the
manifold is defined to be the distance from that point to the
medial axis of the manifold. This definition captures how
close a given point is to other parts of the manifold, where
the “other part” may be local (arising from high curvature)
or global (for example, arising from a separate connected
component). Given this concept of feature size, sampling
density can then be defined as follows: A manifold is said to
be �-sampled, 0 < � 	 1, if every point on the manifold is at
most � times the local feature size away from a sample
point. As � decreases, the manifold becomes sampled
increasingly finely. Interested readers are pointed to [5].

This notion of sampling is quite sensible: The idea is to
require a higher sampling density in regions where there is
a lot of detail and a smaller density in regions where there is
not much detail. A manifold learning algorithm should
possess the property that, if we are given a �-sampling of the
true manifold and if � < �0 for some number �0 < 1, then
the learned manifold should be a good approximation to
the true manifold. Although no proofs will be presented in
this paper, this type of criterion may be useful for the reader
to bear in mind.

Finally, it is important to address two separate problems
which plague any reconstruction algorithm: noise and
undersampling. Almost any real data set will be somewhat
noisy: The samples will not lie exactly on a manifold, but
rather will be close to it. Furthermore, in practice, it is often
difficult to guarantee that the manifold will be sampled
sufficiently densely everywhere. It is clear that both of these
problems are the norm, rather than the exception, when
dealing with real data sets. It is therefore important to state, at
the outset, that the algorithm presented in this paper will not
attempt to deal with either problem. The reason for this is
straightforward: The problem of manifold reconstruction,
given arbitrary (and unknown) geometry and topology, is
sufficiently complicated on its own. The design of an
algorithm to reconstruct manifolds from samples which are
both sufficiently dense and free of noise is a very difficult
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Fig. 1. Reconstruction from unorganized points. (a) The original curve
with some sample points. Given the original, the reconstruction looks
“obvious.” (b) Since the points are unorganized, it isn’t clear which
should be joined together. Some possibilities are shown which are
clearly incorrect given knowledge of the original.

Fig. 2. Bad manifold reconstruction schemes. On the left is the original

curve, on the right the reconstruction. (a) Attaching all samples to their

nearest neighbors leaves holes. (b) Greedy nearest neighbors (see

description in the text) leads to a different kind of problem.



challenge. Clearly, the more interesting case (from a practical
point of view) occurs when we consider the presence of both
noise and undersampling. The algorithm which is described
in this paper may be thought of as a first step toward such an
algorithm. The ultimate goal would be to extend the results
presented here to the more realistic, and yet more challen-
ging, case which involves and undersampling: Such an
algorithm would allow for the reconstruction of real data sets.
Nonetheless, the algorithm which is described in this paper
may be seen as interesting in its own right.

1.3 Outline of the Paper

Section 2 discusses the manifold learning literature and

focuses on relevant work from the field of computational

geometry. In particular, the methods presented in [6], [5] will

be discussed in detail as they represent the state of the art in

manifold learning algorithms. They represent a good model

for the type of algorithm we seek in that they provide the

possibility of capturing the manifold’s topological and

geometrical details with minimal prior knowledge about

the manifold. Algorithmic drawbacks to these methods are

then enumerated. Section 3 outlines the new approach. The

major novelty of this approach lies in its reliance on tangent

space information. The algorithm is fairly complex and, thus,

its description is divided into three distinct parts. Section 4

explains the mathematical motivation behind the algorithm

and details its complexity as a function of the number of

sample points. Finally, Section 5 illustrates several examples

of the algorithm in action, discusses its failings, and points to

some directions for future research.

2 A REVIEW OF EXISTING METHODS

There are a number of techniques for attacking the problem of
manifold learning. One class goes under the heading of
dimension reduction techniques; a common example is the
Karhunen Loeve Transform [7]. The KLT allows for a
mapping of example points embedded in a space to a linear
manifold (or affine flat) of low dimension. However, the
problem is that, unless the original manifold F is linear, the
reconstruction R will not satisfy the topological and geome-
trical properties specified in the problem statement. An
example of this phenomenon is a circle embedded in IR3.
Clearly, the circle is one-dimensional; however, regardless of
whether a one-dimensional (line) or two-dimensional (plane)
approximation is used, nothing close to the original is
recovered. It is apparent that, no matter how finely sampled
the circle is, the KLT will always result in very bad
approximations. It may be noted that the KLT is the solution
to a problem which tries to find the linear manifold, of a
particular dimension, which is such that the sum of the
squared distances from the samples to the manifold is
minimum.

An obvious extension would involve looking for this
minimum over a broader class of manifolds, which could
possibly be nonlinear. The objections to this procedure are
twofold. First, assumptions still have to be made on the class
of manifolds to look at and this assumption will generally
prove restrictive. Consider, for example, the case of a
1-manifold embedded in IR2. We may consider a rather

general class of curves. But, what if the true manifold is
doubly connected? In this case, we should have to broaden
the class of curves being considered. But, what if we don’t
know the connectedness? It is clear that all kinds of difficulties
may arise from such a paradigm. The second issue is more
practical: Actually minimizing such an objective function is
probably difficult. That is, what is nice about the KLT is that
finding the global minimum is analytically feasible due to the
simple linear nature of the manifolds. Global minimization in
a more general case could prove very difficult and local
minimization is highly unsatisfying.

A second class of algorithms take a rather different tack.
The KLT and related methods are global in that they assume a
form for the entire manifold and try to find the appropriate
element of this class based on the sample points; local methods
make no assumptions on the overall shape of the manifold,
but, rather, are sensitive to the geometry and topology of each
neighborhood. Examples of this type of approach may be seen
in the graphics literature [8], [9], [10], which presents several
instances of attempts to reconstruct surfaces (2-manifolds)
embedded in IR3. These results, while often impressive in
practice, are difficult to analyze mathematically and are
therefore not extensible to the general case of manifold
learning. Bregler and Omohundro [11] attack the general
problem in this local manner; however, they do not generate
an actual manifold, but, rather, a function which projects
points in the embedding space onto their nearest neighbors in
the manifold. Furthermore, their method is problematic in
that the object it implicitly generates is not truly a manifold as
it may have varying dimension in different parts.

More recently, a version of the manifold learning problem

has been formally solved in [6], [12], [5], for the special cases of

reconstructing curves (1-manifolds) in IR2 and surfaces

(2-manifolds) in IR3. The solutions have used machinery

from computational geometry, both in terms of construction

and proofs. Other papers in the same vein have followed suit

[13], [14], [15], [16], [17], [18], [19], [20]. The crust is defined to

be the set of edges from the Delaunay Triangulation of the set

composed of the samples and their Voronoi vertices such that

both vertices of the edge belong to the set of samples.

Interested readers are referred to [6], in which it is shown that,

if the curve is �-sampled (in the sense of Section 1.2) for

� < 0:252, then the crust represents a proper reconstruction of

the true curve. The algorithm for surface reconstruction [5] is

quite similar to the construction of the crust, with one major

difference: The set of Voronoi vertices is replaced by the set of

poles, which are essentially the two farthest Voronoi vertices

of a sample’s Voronoi cell, one on each side of the surface. The

proofs are more complex in this case, but the result is the

same: The new construction is shown to be homeomorphic to

the original manifold and close to it if the surface is sampled

sufficiently finely to begin with.
There are several reasons why these algorithms, as

impressive as they are, are not easily extensible to the general
case, but one particular reason stands out. This relates to
complexity considerations. The Voronoi Diagram of an
N point set in IR2 may be calculated inOðN logNÞ; in IR3, the
complexity is OðN2Þ. However, in the case of IRD, the
complexity becomes the critical factor: OðNdD=2eÞ. Since the
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embedding spaces we are often interested in may have

D > 100, this is not a feasible approach. Instead, the complex-

ity should be a function of the dimension of the manifold,K.

This is in fact what is achieved in the proposed algorithm.

3 THE ALGORITHM

The method to be considered now will result in a simplicial

complex; however, it avoids computing the full Voronoi

Diagram/Delaunay Triangulation in order to construct the

complex. Instead, it finds approximations to the tangent space

at each sample and then reconstructs the manifold based on

these tangent spaces. Effectively, the computation is equiva-

lent to calculating something like a partial Delaunay Trian-

gulation, where the triangulation is restricted to themanifold. As

a result, the complexity of the operation will not depend on the

dimension of the embedding space, but rather on the (more

geometrically intrinsic) dimension of the manifold.

The following is a brief overview of the algorithm, to be

elaborated upon over the next several pages. The algorithm

consists of three steps. In the first step, an approximation to

the tangent space at each sample is found. Using this

information, the second step leads to the calculation of the

“local region” at each sample: The local region is essentially

the little patch of manifold which surrounds a given sample.

Finally, the third step stitches together these local regions into

a simplicial complex, which represents the entire manifold.

The mathematical motivation for structuring the algorithm in

this way is given after the algorithm, in Section 4.1; some

readers may find it useful to examine this section concur-

rently with the algorithm description.

Let us begin by establishing the basic notation. The

embedding space is Z, the manifold is F , and the sampling

of the manifold is X. X � F � Z, with jXj <1. Recall that

the embedding space is restricted to be a Hilbert space as the

use of an inner product is necessary to the algorithm. The goal

of the algorithm is to construct a simplicial complex based

only on X, denoted SCðXÞ. For each point x, the neighbor-

hood of x, denotedNBDðxÞ, is defined as follows: Out of the

entire sampling X, NBDðxÞ is defined to be the rK closest

points to x, where r � 1 andK is the manifold dimension. r is

a parameter which can be set. Given these definitions, the

algorithm may now be described. It consists of three steps.

3.1 Step 1: Finding Tangent Spaces

The goal is to find an approximation to the tangent space at

each point x 2 X. Typically, this procedure will only work

well for interior points; at points along the boundary, it

generally fails. This failure is taken account of explicitly,

which will become clearer in the following exposition. In

order to find the approximating tangent space at x, denoted

ATSðxÞ, we must make use of the following definition.

Definition. A point x is said to be enclosed by the K þ 1 points

fxigKi¼0 if the projection of x onto the K-dimensional

hyperplane running through fxigKi¼0 is contained within the

K-dimensional simplex defined by fxigKi¼0.

It will be useful to have a simple method for testing the

enclosure property on a given set of points. Note that the

hyperplane running through fxigKi¼0 is given by

spanfx1 � x0; . . . ; xK � x0g þ x0:

Indeed, any point on the hyperplane may be given by

x0 þ
XK
i¼1

 iðxi � x0Þ ¼ x0 þ
XK
i¼1

 i�i;

where �i ¼ xi � x0 and  is a K � 1 column vector which

can take on any value in IRK . Now, the projection problem

is specified as

min
 2IRK

x0 þ
XK
i¼1

 i�i � x

�����
�����:

This can be solved as follows:

x0 þ
XK
i¼1

 i�i � x

�����
�����

2

¼
XK
i¼1

XK
k¼1

 i kh�i;�ki �
XK
i¼1

 ih�i; "i

�
XK
i¼1

 ih";�ii þ h"; "i

¼  T� � 2 T þ k"k2;

where " ¼ x� x0, � is a Hermitian K �K matrix given by

�ik ¼ h�i;�ki, and  is a K � 1 column vector given by

 i ¼ 1
2 ðh�i; "i þ h";�iiÞ. This may be now be minimized to

yield

 � ¼ ��1 :

Finally, ifwedefine$0 ¼ 1�
PK

i¼1  
�
i and$i ¼  �i ; i ¼ 1; . . . ; K,

then the condition thatx is enclosed by fxigKi¼0 is equivalent to

the condition

0 	 $i 	 1; i ¼ 0; . . . ; K

which is quite easy to test.
Given the enclosure property, an algorithm for calculat-

ing ATSðxÞ may now be specified.

Definition. A set of K þ 1 points fxigKi¼0 which are drawn

from the neighborhood of x, NBDðxÞ, is said to be a tangent

basis for the point x 2 X if 1) x is enclosed by fxigKi¼0 and

2) no other point in NBDðxÞ is enclosed by fxigKi¼0. A

shifted version of the hyperplane defined by fxigKi¼0, namely,

spanfx1�x0; . . . ; xK � x0g þ x, is referred to as x’s approx-

imate tangent space, or ATSðxÞ. Note that x 2 ATSðxÞ.
It may be the case that a point x has no approximating

tangent space; in this case, we declare x to belong to the

boundary.

Definition. Any point x which has no tangent basis is said to

belong to the boundary, denoted BD.

The algorithm for finding ATSðxÞ then follows in a
straightforward manner from the definitions. One searches
through all ðkþ 1Þ-tuples of points, starting with the nearest
first, until one finds a tangent basis. Once the tangent basis
is found, ATSðxÞ is automatically calculated (as in the
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definition of the tangent basis). If no tangent basis is found,
the point x is declared to belong to the boundary.

Note that this algorithm for calculating the approximate
tangent space, as based on the enclosure property, is an
intuitive one. The idea is that the ATS is best approximated by
a nearby secant, where the correct notion of closeness is given
by enclosure; this is essentially inspired by the mean value
theorem.

3.2 Step 2: Calculating the Local Region
and Edge-Set

The goal is to find the little patch of the manifold which
contains x. As stated, this is, of course, ill-defined; however,
a particular definition of the local region will be given
which is useful in calculating the simplicial complex SCðXÞ.
Definition. The perpendicular bisecting halfspace of the

point x 2 X with respect to the point x0 2 X is denoted by
PBHðx; x0Þ and is given by

PBHðx; x0Þ ¼ fz 2 Z : kz� xk 	 kz� x0kg:

Definition. The local region of x 2 X �BD, denoted LRðxÞ,
is given by

LRðxÞ ¼
\
x02X

PBHðx; x0Þ
" #\

ATSðxÞ:

Note that the local region is only defined for points that are
not in the boundary; that the local region is K-dimensional,
as ATSðxÞ is K-dimensional; and that x 2 LRðxÞ (since
x 2 ATSðxÞ; PBHðx; x0Þ).

Calculating the local region is a matter of deciding which
of the constraints provided by intersecting the halfspaces
PBHðx; x0Þ are binding. That is, we could write

LRðxÞ ¼
\

x02ESðxÞ
PBHðx; x0Þ

2
4

3
5 \ATSðxÞ;

where ESðxÞ � X and is the smallest such set. ESðxÞ is
referred to as the edge-set of x for reasons that will be clear
shortly. In order to find the edge-set, a convex hull technique
may be used.

In particular, note that

ATSðxÞ ¼ z 2 Z : z ¼ �x þ x;  2 IRK
 �

;

where �x is a short form for
PK

i¼1 �x;i i and �x;i are the
vectors found in Step 2, and

PBHðx; x0Þ ¼ fz 2 Z : h*x0 ; x� +x0 i � 0g;

where *x0 ¼ x� x0 and +x0 ¼ 1
2 ðxþ x0Þ. Note that

LRðxÞ ¼
\
x02X

PBHðx; x0Þ \ATSðxÞð Þ

and

PBHðx; x0Þ \ATSðxÞ
¼ z 2 Z : h*x0 ;�x þ x� +x0 i � 0;  2 IRK

 �
¼ z 2 Z : ,Tx;x0 � -x;x0 ;  2 IRK

n o
;

where ,x;x0 is a K � 1 column vector whose ith entry is
h�x;i; *x0 i, and -x;x0 ¼ h*x0 ; +x0 � xi is a scalar. Thus, the
problem is reduced to looking for the binding set of
inequalities out of the entire set

,Tx;x0 � -x;x0 x0 2 X � fxg:

It may be shown that this problem is equivalent to finding
the convex hull in IRK of the points

.x;x0 ¼
,x;x0

-x;x0
x0 2 X � fxg

The constraints which bind are exactly the same as the

points which lie on the exterior of the convex hull. In terms

of complexity considerations, finding the convex hull N

points in IRK is OðNdK=2eÞ; see [21]. Finding the set of

binding constraints gives us ESðxÞ.
Note that finding the local region (and, hence, the edge-set)

is equivalent to performing a restricted Delaunay Triangula-

tion calculation. This calculation is made possible through the

aforementioned computation of the convex hull.

3.3 Step 3: From the Edge-Set to the Simplicial
Complex

The goal is to take the edge-sets ESðxÞ 8x 2 X �BD and to

findasimplicialcomplex.AK-dimensionalsimplexconsistsof

edgesbetweenallpairsof theK þ 1points.Thus,analgorithm

to convert edge-sets into simplices may proceed as follows.

An undirected graph G ¼ ðV ;EÞ is formed as follows:

The set of vertices is set to be V ¼ X. Given two vertices

x; y 2 V , an edge e ¼ ðx; yÞ is in E iff x 2 ESðyÞ and

y 2 ESðxÞ. A simplex in the simplicial complex SCðXÞ if

all of the edges of the simplex belong to E. Note that a

larger simplicial complex may be formed with a slightly

different graph G0 ¼ ðV 0; E0Þ, where V 0 ¼ V and e ¼ ðx; yÞ is

in E0 iff x 2 ESðyÞ OR y 2 ESðxÞ.

4 DISCUSSION OF THE ALGORITHM

The algorithm which was specified in the previous section
is fairly involved. We will try to explain aspects of it on two
independent fronts: why it works and its complexity.

4.1 Motivation of the Algorithm

The following result is proven in [5]. Let V ðXÞ be the
Voronoi Diagram of the set of sample points X of
manifold F , where the manifold is of dimension 2 and is
embedded in IR3; note that, by V ðXÞ we mean the entire
diagram, rather than just the vertices. Let � ¼ V ðXÞ \ F ;
intersecting the Voronoi Diagram, which is a partition of
IR3, with the manifold F has the effect of partitioning the
manifold. Now, let Dualð�Þ be the dual of �, that is, if two
samples x1 and x2 are contained in cells of � which border
each other, let Dualð�Þ contain an edge between x1 and x2.
It can be shown that if X is a 0.1-sample of F (in the sense of
Section 1.2), Dualð�Þ will be a simplicial complex which is
homeomorphic to F and sufficiently close to it.

Of course, this theorem cannot be used for constructing
SCðXÞ since the construction of Dualð�Þ relies on knowledge
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of F , which we do not possess. All we know, of course, is the
sampling X � F . However, if local knowledge of F was
available, this might prove sufficient to construct SCðXÞ.
Now, F is locally approximated at a point x by the tangent
space to F at x, so, if F can be thought of as a collection of
tangent spaces, then perhaps some progress can be made.

In fact, this is exactly what is done. In Step 1, the

approximating tangent space is calculated at each point. In

Step 2, this information about the local behavior of the

manifold is used to find the edge-set in a manner which is

exactly parallel to intersecting the Voronoi Diagram of the

points with this local approximation of the manifold.

However, the advantage of doing things in the way

described in the previous section is in terms of the

complexity, as discussed in the next section.

4.2 Complexity

To analyze the complexity of the overall algorithm, it will be
simplest to break it down step by step. Complexity is in
terms of N , the number of samples. (Terms which are
purely in K, the dimension of the manifold, and which are
independent of N are dropped.)

Finding the Neighborhoods. For a given x, this step is
OðrKNÞ ¼ OðNÞ since the neighborhood is of size rK.
(In fact, the step could be OðN logNÞ: All of the points
could be sorted in terms of their distance with respect to
a fixed point; however, we will assume that rK < logN .)
Thus, for all N points, this step is OðN2Þ.

Step 1. In the worst-case scenario, all combinations of
K þ 1 points out of the neighborhood, which is of size
rK, must be searched. As a result, for a single point, the
complexity is

rK

K þ 1

� �
< ðrKÞKþ1 ¼ Oð1Þ;

for all points, it is therefore OðNÞ.
Step 2. As was mentioned in Section 3, the calculation of the

local region amounts to a convex hull calculation of N
points in K dimensions; this has complexity OðNdK=2eÞ.
This must be perfomed for for each sample, leading to a
complexity of OðNdK=2eþ1Þ.

Step 3. In principle, an edge-set ESðxÞ may have as many as

N (or really N � 1 elements); in practice, of course, this is

highly unlikely. However, assuming that this is the case,

then the complexity of dealing with a single edge-set is
N
K

� �
< NK ; so, the complexity of constructing the

simplicial complex from all of N edge-sets is OðNKþ1Þ.
IfN is large, the complexity of Step 3 dominates so that the

complexity of the entire algorithm isOðNKþ1Þ. However, in a

typicalproblem,ESðxÞshouldbeOð1Þ forallx 2 X;asaresult,

the complexity from Step 2 dominates and the complexity is

OðNdK=2eþ1Þ. In fact, however, we may lower the complexity

further if we are willing to sacrifice a little bit of certainty. The

algorithm still works reasonably well if the convex hull

calculation uses only the rK nearest neighbors, rather than all

N points. In that case, the complexity from Step 2 should be

OðNðrKÞdK=2eÞ ¼ OðNÞ; this then implies that the overall

complexity will be dominated by the process of finding the

neighborhoods, and is thus OðN2Þ. (Of course, despite

Steps 1-3 having a total complexity of OðNÞ, the prefactor

multiplyingN , which is ignored by theOð�Þ notation, may be

quite considerable.)

5 EXAMPLES AND CONCLUSIONS

In order to demonstrate the efficacy of the reconstruction

algorithm, several examples are shown in Figs. 3, 4, 5, 6, 7,

and 8. Owing to the nature of what can be visualized, only

three types of examples are reproduced: Here one-mani-

folds (curves or disconnected curves) embedded in IR2, one-

manifolds embedded in IR3, and two-manifolds (surfaces or

disconnected surfaces) embedded in IR3. Of course, in cases

of interest, we are often looking for, say, three-manifolds

embedded in IR40; however, there is no good way of

visualizing this. In all cases, r ¼ 10 is used.

In each case, the samples are shown along with the

reconstructed manifold; despite the varying geometries and

topologies, the algorithm is correct in nearly all of its

reconstructions. It should be noted, however, that there are

cases in which the algorithm fails; see Fig. 9. The failure is
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Fig. 3. A simple curve in the plane. (a) The samples. (b) The reconstructed manifold.



caused by the presence of cyclic quadrilaterals, which is a

general curse for Delaunay type methods: These methods

cannot decide which diagonal to include. More specifically,

there are two types of problems which arise. First, there are

the squares, where both diagonals appear, so that the square

is effectively rendered as a degenerate tetrahedron. Second,

there are squares with no diagonals; this type of error is seen

only once in Fig. 9. In the first case, the manifold constructed is

a little “thicker” than it should be, i.e., there is a spurious

tetrahedron present, like a callous. In the second case, the

reconstructed manifold contains a small hole, which doesn’t

exist in the underlying manifold. Both errors are significant in

their own ways; it may be that holes are slightly worse than

callouses because they alter the homotopy type of the space.

The following are the major directions for future research.

First, the algorithm must be improved to avoid the failures

mentioned above. In particular, both callouses and holes

must be removed from the reconstructed manifolds. Second,

it would be desirable to theoretically establish some bounds

on sampling density under which the algorithm will be

expected to succeed. This sort of result would take the form

“for all sampling densities smaller than �0, the algorithm will

generate a homeomorphic reconstruction of the underlying

manifold;” the key part of the result consists of finding �0. A

third direction might focus on ways of decreasing the

algorithm’s complexity. Methods of achieving greater effi-

ciency were suggested in an informal way at the end of

Section 4.2, the goal would be to formalize these ideas. Fourth,
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Fig. 4. A disconnected curve in the plane. (a) The samples. (b) The reconstructed manifold.

Fig. 6. Interlocking circles. (a) The samples. (b) The reconstructed

manifold.

Fig. 5. A spiral. (a) The samples. (b) The reconstructed manifold.



the algorithm must be able to address the problem of noise,

particularly noise which is normal to the manifold. Certainly,

such noise will destabilize the ATS calculations; the critical

issue is how to circumvent this problem. Finally, given the

latter improvement, it would be natural to try out this

algorithm on real, physically meaningful data sets.
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