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Abstract

In this paper we present a technique for tracking
borescope tip pose in real-time. While borescopes are
used regularly to inspect machinery for wear or damage,
knowing the exact location of a borescope is difficult due
to its flexibility. We present a technique for incremental
borescope pose determination consisting of off-line fea-
ture extraction and on-line pose determination. The off-
line feature extraction precomputes from a CAD model of
the object the features visible in a selected set of views.
These cover the region over which the borescope should
travel. The on-line pose determination starts from a cur-
rent pose estimate, determines the visible model features,
and projects them into a two-dimensional image coordi-
nate system. It then matches each to the current borescope
video image (without explicitly extracting features from
thisimage), and uses the differences between the predicted
and matched feature positionsin a least squares technique
to iteratively refine the pose estimate. Our approach sup-
ports the mixed use of both matched feature positions and
errors along the gradient within the pose determination. It
handles radial lens distortions inherent in borescopes and
executes at video frame rates regardless of CAD model
size. The complete algorithm provides a continual indica-
tion of borescope tip pose.

1. Introduction

A borescope is a flexible tube which alows a person
at one end of the tube to view images acquired at the other
end. This can be accomplished with coherent fiber bundles
running through the tube, or a small video camera located
at the tip of the borescope and a video monitor at the other
end. Borescopes are typically a centimeter or lessin diam-
eter, a few meters long, and used to inspect inaccessible

regions of objects. For example, when inspecting the inter-
nal structure of a jet engine for cracks or fatigue, small
openings from the outside allow the borescope to be
snaked into the engine without having to drop the engine
from the plane. In such an inspection, it is often difficult
for the inspector to know the exact borescope tip location
within the engine, making it difficult to identify the loca-
tion of new cracks found or to return to previously identi-
fied trouble spots. When a crack is found, the inspector
must measure its length and width which is problematic if
the borescope' s pose is unknown.

Traditional, non-video techniques for tracking an
object do not work well within the environment a bores-
cope typically encounters. Electromagnetic fields are cor-
rupted by the surrounding presence of metal. Acoustic
techniques are susceptible to ringing caused by metal parts
and convoluted passages, and any technique that relies on
a clear line of sight is by definition implausible in the
borescope inspection environment. The only option is
tracking based on the borescope images themselves.

2. Approach

Borescope tip tracking is essentially the camera pose
problem with added constraints and difficulties. First, the
light source for a borescope is collocated with the camera,
so the light is moving but always coincident with the cam-
era. Second, object recognition is non-standard: while the
complete object is known, the position within the object
(the jet engine) is not and only a small fraction of the com-
plete object will appear in any single image. Third, the
object contains structural repetition, making an approach
based solely on dead reckoning unrealistic. Fourth, track-
ing (pose estimate updates) must occur at near frame-rates,
preferably without specialized hardware. Combined, these
constraints make borescope tip tracking a novel and chal-
lenging problem.

Our solution to these problems is a two fold approach
consisting of off-line feature extraction from a CAD
model and on-line pose estimation. The off-line extraction
precomputes from the CAD model 3D edges consisting of



a 3D position and normal direction in the coordinate sys-
tem of the CAD model. These features are computed for
local regions of the model and consider visibility con-
straints. This off-line process need only be done once for a
given CAD model. The on-line process starts from a
known landmark and compares the precomputed features
for that region of the model to the borescope video. From
this comparison an error vector is created which is used to
compute an updated pose. This process repeats for each
frame of video. The performance of the on-line algorithm
is unaffected by the size or complexity of the CAD model.

Beyond borescope inspection, this approach would be
of value for any model-based pose-estimation problem
where the camera s placed within the model.

3. Related Work

While borescope tip tracking is anovel problem, there
are anumber of related techniques which could be consid-
ered. One approach is to subdivide the CAD model into
many smaller parts and then determine the borescope pose
based on standard object recognition strategies. Unfortu-
nately, this approach, which is employed in a different
context by Kuno, Okamoto and Okada[8], suffers from
aperture problems caused by the structural repetition
inside a jet engine. Further, in the time required for part
recognition and associated pose estimation, the borescope
may have moved too far for unique localization. By con-
trast, our algorithm determines pose incrementally based
on the image locations of precomputed features, allowing
it torun nearly at frame rate.

While camera pose and object pose have been treated
extensively [5][12][15], existing techniques are difficult to
apply in our situation. These techniques match 3D object
features with a set of 2D features extracted from a single
image. In contrast, since we must estimate pose in real
time, we can not extract complicated image features and
the matching process must be rapid. To accomplish this,
we match simple 3D edgels to 2D intensity images. We
use the current pose estimate to project these 3D edgels
into the image and match by searching along the projected
edgel's normal direction, usually deriving only one con-
straint per projected edgel. This implies that the match for
a 3D feature moves and changes during pose determina-
tion, making our technique similar in spirit to other tech-
nigues that determine pose without specific point
matches|[16].

The first of such techniques is that of Branca [1] who
presents a passive navigation technique based on calculat-
ing the focus of expansion (FOE). Essentially, Branca cal-
culates the image movement vectors between two frames,
performs an iterative error minimization to find a set of
feature matches between the two frames, then calculates

the FOE and camera translation from them. This approach
uses planar invariants to find the point matches by making
the condition of planarity part of the error minimization
process.

This approach is certainly novel and it doesn’t require
a model to work from, but it is not suitable for borescope
inspection. It requires planar surfaces with at least five
features on them while borescopes typically inspect
curved surfaces such as the inside of ajet engine. Further-
more it only calculates camera translations (not rotation),
and it has no method to prevent the incremental errors
from accumulating. This last point is critical in incremen-
tal pose estimation. Many techniques use interframe dif-
ferences without any form of dead reckoning. The errors
from each pose estimate accumulate and create stability
problems and gross errors. This is part of the motivation
behind using model based pose estimation. The model can
be used for dead reckoning as long as its 3D features are
static. This paper does not directly address deformable
models.

Another paper worth noting is Khan's [7] paper on
vision based navigation for an endoscope. This is a very
similar problem to borescope navigation although Khan et.
al. solveit in a different manner. Instead of starting with a
MR or CT model of the patient’s colon, they construct the
model as they go. When the endoscope enters an
uncharted region of the colon they start extending the
model. Navigation is accomplished by using two features
that are commonly found in colonoscopies: rings of tissue
along the colon wall and a dark spot (the lumen) in the
image where the colon extends away from the endoscope.
This approach is real-time and once it has built the model
it can support dead-reckoning. It requires no modification
of current endoscope hardware or precomputed models.
Unfortunately its choice of features restricts its usage to
inspection of ribbed tubes.

Lowe presents a model based motion technique that
goes beyond pose estimation to also handle models with
limited moving parts [10]. His technique is essentialy a
modified hypothesize & verify search tree based on line
segment matches. It uses probabilities from the previous
pose estimate to order the evaluation of the possible
matches; this significantly improves the typically exces-
sive computational requirements. There are three signifi-
cant drawbacks to such an approach. The first is that it
relies on line segments as features. As will be demon-
strated later, there are few line segments in a jet engine.
Second, it requires complete feature extraction from the
input image which is time consuming. In his application,
dedicated image processing hardware was required and yet
the resulting performance was limited to three to five
frames per second. Finally, it is still sensitive to the num-
ber of potential features in the model. Results were



reported for amodel consisting of only afew lines. Unfor-
tunately, pose estimation inside a complex part typically
results in millions of features in the model, nearly all of
which will be obscured in a given view.

Some well known related work was performed by
Dickmanns and his colleagues. His work has focused on
real-time, model-based pose estimation and navigation. In
an early paper [2] he describes a new approach based on
measuring error vectors between predicted and actual fea-
ture locations, and then using these errors as input to mod-
ify the pose estimate. In later work the state estimation is
handled by a Kalman filter [3] and also incorporates non
vision based inputs such as airspeed [4]. The later paper
presents a good overview of his technique.

There are two significant differences between Dick-
manns' work and this work. First Dickmanns uses the
CAD model to develop his control mechanism, i.e. his
software, feature selection, and Kalman filter are tuned to
a specific task with a specific model. His approach does
not support supplying a general CAD model to work from.
This customization can be used to reduce the computation
load and improve robustness. For example, when landing
an airplane, Dickmanns uses ten predefined image features
that correspond to specific parts of a runway and the hori-
zon. Incoming images are analyzed only at the predicted
locations of those ten features. Likewise those ten features
represent unique defined inputs to the Kalman filter. This
paper does address the issue of automatically calculating a
set of pertinent features from a CAD model, and it assigns
no semantic meaning to those features.

The second difference is Dickmanns' choice of fea-
tures. He uses constant features such as oriented edge tem-
plates which yield one constraint. Our paper considers the
interpretation of a feature as providing zero to two con-
straints as appropriate. This is especially important as the
features are automatically generated, not manually defined
asin Dickmanns' work. Thisimpacts the central pose esti-
mation calculation which must be adapted to the number
of constraints provided by the features. There are aso
some minor differences such as Dickmanns work not
incorporating wide angle lens distortions as found in a
borescope, but most remaining differences would require
minor modifications to either approach.

One of the most closely related approaches is that of
Chris Harris which uses control points from the CAD
model combined with a Kalman filter [6]. The first key
difference is that he doesn’'t indicate how his control
points are generated. It is implied that they are hand
selected from the 3D model which is impractical in many
situations. Second, since his approach is focused on esti-
mating the pose of an object from the outside, its visibility
tests for the control points are too limited for internal pose
estimation. Finally, his approach deals with features as

providing zero or one constraint. As will be discussed
later, it is sometimes necessary to have features provide
two constraints (position) instead of just a gradient vector
displacement.

4. Featur e Extraction

As summarized above, our approach consists of two
primary pieces. off-line feature extraction, and on-line
pose determination. Off-line feature extraction must take
the CAD model, which could be greater than one gigabyte
in size, and produce 3D features that can be loaded quickly
based on a current pose. This process is critical because
just traversing the CAD model in memory would consume
more time than allowed for incremental pose estimation.
The major components of the feature extraction process
are depicted in Figure 1 and the process is summarized in
the following five steps:

1. Based on the CAD model, a list of 3D sample points
is generated over the 3D region where the borescope
might travel. This could be either a uniform sampling
of the 3D region completely enclosing the CAD
model, or it could be a non-uniform sampling of all or
part of the region.

2. At each sample point, computer graphics hardware is
used to render a collection of 2D images of the CAD
model from that location. The view directions of these
images are selected to ensure that the collected
images form a mosaic completely enclosing the loca-
tion in question.

3. For each synthetic image generated in step two, edge
detection is used to extract edgel chains having large
intensity gradients, and then a fixed size subset of
edgels are selected. The selected edgels have the larg-
est intensity gradients but also satisfy a minimum
pairwise image separation.

4. The 3D location and direction on the CAD model is
computed for each selected edgel. These become the
3D features for the current sample point.

5. The process repeats for each image and sample point.

Thefirst step is to determine where the sample points
will be and how many of them will be used. This operation
must generate enough sample points and 3D features that
there will be one near any position encountered where the
borescope travels. For the results presented here, the sam-
ple points were generated simply as aregular grid.

In the second step computer graphics hardware is
used to render images of the CAD model. The eventua
goal isto produce features useful during on-line pose esti-
mation. The problem then becomes determining how to
“predict” a useful feature from a CAD model. From the



perspective of the on-line algorithm, a useful feature will
be one that can be used to provide an image movement
vector. As such, image intensity discontinuities, or edges,
will be likely candidates. One possibility is that range or
normal discontinuities in the CAD model will form image
intensity discontinuities in the video. This is often, but not
always true, and some intensity discontinuities will arise
solely from markings and changes in materials. A more
general and more reliable approach is to use computer ren-
dering to create a realistic image of what the part should
look like. This can then be examined for intensity edges.

In practice, step two involves rendering six images for
each sample point. These images are rendered with a view
angle of ninety degrees and oriented al ong the positive and
negative directions of the three cartesian axes to form an
image cube. To obtain the best features possible, the spec-
ular and diffuse material properties of the CAD model are
manually adjusted so that the computer rendered images
closely resemble video of the part to be inspected. This
reguires manually selecting material properties for render-
ing that match the properties of the physical part.

In step three, standard techniques are used to extract
edgel chains from each rendered image. From the edgel
chains up to fifty features are extracted with a minimum
angular separation of three degrees relative to the bores-
cope tip. That gives fifty features for each view, six views
for each sample point yielding up to 250 features per sam-
ple point. If the synthetic images contain few edgels then
there will be fewer than 250 features. Likewise more fea-
tures could be used if available. Limiting the number of
features selected effectively limits the processing time
required for the on-line pose estimation.

These image features are then converted to 3D edges
by casting a ray from the sample point, through the edgel
in the image plane and into the CAD model. The closest
ray-polygon intersection provides the 3D position of the
edgel. The gradient in 3D can be found in a similar man-
ner. These 3D positions and orientations are recorded in
the global coordinate system of the CAD model so they
can be projected onto any image, not just the ones from
which they were generated.

Overall, this off-line process is very time consuming,
necessitating use of ray-polygon acceleration techniques,
such as spatial hashing [11].

5. On-line Pose Deter mination

The on-line pose estimation algorithm combines an
initial pose estimate, the 3D features computed off-line,
and the live video from the borescope to produce arunning
pose estimate. This algorithm uses the current pose esti-
mate to select the appropriate subset of the 3D features

extracted during preprocessing, project these features into
the image coordinate system, match these features to the
borescope image, and refine the pose estimate based on
differences between the projected and matched feature
positions. By using precomputed features, by avoiding the
need for explicit feature extraction in the borescope
images, and by iterative pose refinement, the algorithm
achieves video rate pose determination. An important fea-
ture of this pose determination algorithm is that a pro-
jected 3D feature (edgel) may either (a) be matched
exactly, giving a 2D position error vector, or (b) be
matched along the gradient direction, giving only the 1D
component of position error along this direction, or (c) be
ignored entirely as an outlier. The approach also accounts
for the significant lens distortions of a borescope. An over-
view of the algorithm follows:

1. Obtain the previous borescope location and orienta-
tion. Initially this comes from the operator positioning
the borescope at a known location or landmark. Sub-
sequently, it is taken from the results of the estimated
pose for the previous borescope image.

2. Determinethe 3D sample point closest to the previous
borescope location.

3. Determine which features for that point would be vis-
ible to the borescope based on its previous pose.

4. Repeat the following three steps until the change in
the pose estimate falls below a threshold or the inter-
frame time has expired.

5. Project the N 3D features selected in step three
onto a 2D image coordinate system based on the
current pose estimate (initially the estimate from
step one), computing both the 2D position and
gradient (normal) direction of each feature.

6. For each feature, estimate the error in its pro-
jected position by finding the position of the best
match between the projected feature and the
borescope image region near the projected posi-
tion. The difference in position between pro-
jected and matched image positions forms a 1D
or 2D error term for each feature, depending on
the results of the matching process.

7. Use the N error terms to update the borescope
pose estimate.

8. Returnto step one and start working on the next frame
of video.

In step one, there typically are a few predefined land-
marks for the inspector to choose as a starting point. Step
two is a very simple calculation to find the closest sample
point to the current pose. Step three selects only the fea-
tures that could be seen by the borescope in its previous
pose. Since the features are 3D locations, this involves



determining if they are in the borescope's view frustum.
This set is further restricted to eliminate features near the
edges of the view frustum by selecting an angle slightly
smaller than the borescope’s view angle. Step four starts
an iterative error minimization process to determine the
optimal pose estimate. This process is limited to the inter-
frame time of the borescope. In practice the optimal pose
may not have been found when the time has elapsed, but
the current pose estimate is typically close enough to the
optimum to provide a suitable pose for projecting features
for the next frame. In addition, first order motion predic-
tion is used to aid the projection of features for the next
frame. In step five the 3D features are projected onto the
current image plane yielding 2D edgels. This projection is
the standard pinhole perspective projection followed by a
second order radial lens distortion (see below).

Steps six and seven warrant additional detail. Step six
starts with N 2D edgel locations, their corresponding 2D
edgel gradients, and the current borescope image. For each
2D location, the normalized cross-correlation between a
one dimensional step function template (as shown in Fig-
ure 2) oriented along the edgel gradient, and the video at
that location (see Figure 3) is measured. This process is
repeated at |ocations along the positive and negative edgel
gradient direction up to a maximum distance determined
from the camera’ s uncertainty. If the maximum correlation
found is greater than a threshold, then the feature is con-
sidered a gradient feature. It provides one constraint to the
pose refinement computation --- the optimal gradient dis-
placement. This displacement is calculated using a
weighted average of the correlations, essentially giving a
subpixel location to the matched position. In practice the
gradient direction will not be axis aligned as in Figure 2,
so calculating the normalized cross-correlation involves
resampling the step function template onto the pixel array.
For maximum performance a set of step function tem-
plates can be precomputed for a set of discrete orientations
and sub-pixel positions. This is what is actually done in
the implementation to avoid the cost of on-line resam-
pling. The step function template selected provides a bal-
ance between discrimination and noise resistance for the
300x300 pixel images produced, but other templates could
be used.

The initial template matching is restricted to image
positions along the feature's gradient direction because
each feature consists of alocation and a direction --- there
is nothing to limit tangential movement. Only if a correla-
tion above the threshold isn't found along the gradient
direction, is the search extended to include tangential dis-
placements. For example, if the feature shown in Figure 3
were moved to the left, eventually the gradient direction
search would no longer intersect the edge it previously
had. In this situation the tangential search can provide the

necessary error vector --- a two component error vector as
opposed to the earlier one component gradient displace-
ment error vector. This error vector will drive incremental
pose estimation toward a pose where the projected feature
location will produce a match along its gradient in subse-
guent iterations of steps five through seven.

After calculating the normalized cross-correlation
over the entire region the maximum value may still be
quite small. This corresponds to the situation where an
edge is expected within the region but nothing suitable is
found. In this case no error vector is produced but the fea-
ture still provides information by its lack of an error vec-
tor. Its low correlation will impact the average correlation
which is used as a confidence measure for the algorithm.
This process is repeated independently for al N features,
each cogtri buting zero, one or two components to the error
vector Ey for the overal local error at iteration t. Thisis
the error vector to be minimized by the delta pose calcula
tion. Step seven,ecalculating the change in pose based on
the error vector Et, is described in the next section.

6. Delta Pose Calculation

The change in pose is computed from the error vector
Et. For simplicity in deriving the delta pose estimate we
first consider the case where each of the features are 2D
matches each producing two constraints. This will then be
extended to handle all three conditions. We start with the
following definitions:

N
Pt = the 6D boroscope pose vector at iteration t

Ui; = the 2D image position for featurei at iteration t
% = the 3D position of feature i
F = the boroscope projection function

Where for F we are using the simple perspective
camera model with known intrinsic parameters (This is
extended to handle radial lens distortion below.) Starting
from the equation

> >
Uit = F(Pt, Xit)

we can derive an expression for the change in the fea-
ture's image coordinates based on changes in the bores-
cope pose as follows:

> _ > >
Dhjt = Uit —Uj(¢—1)

E(E’(t—l) +DP, %) —E(B(t—l). )

> 52
J;(P(t-1),%)DP +H.O.T.

Where J; is the Jacobian. Dropping the higher order
terms, yields a constraint on the pose for each error vector.



We can combine the constraints for all N >= 3 matches to
solve for the pose. First we combine the DU;; vectorsinto
a 2N error vector Et . Likewise we combine the Jacobians,
g intoﬁa 2N by 6 matrix J. Then, we determine the pose
error DP¢ by minimizing the following error norm:

—> = 2 i i = t —1 t=>
H‘]Dpt_EtH yielding DPy = (JJ) JEt

The resulting DBt provides an error vector for the
borescope pose and can be computed using singular value
decomposition (SVD). For a given frame this technique is
applied in an iterative manner to account for non-linearity
and feature rematching. The Jacobians can be computed
along the lines of the technique described in Lowe[9]. For
agiven borescope image frame this techniqueis applied in
an iterative manner to account for non-linearities and fea-
ture rematching, as discussed above.

This technique is easily extended to handle the radial
lens distortion typical of borescopes. The following distor-
tion model [13], solves for the distorted coordinates as a
function of the non-distorted coordinates.

b= u(l+krd)
= v(1+krd)
F=or(l+ked)

Inthis u and v are the non-distorted pixel coordinatesin
consideration, r is the non-distorted radius of that point
(measured form the center of the image), and k isthe dis-
tortion constant computed off-line during camera calibra-
tion. Thisisasecond order approximation and it can easily
be extended to higher orders. This model isless commonly
used than the traditional formulation which computes non-
distorted coordinates from distorted values. Our motiva-
tion is that this formulation is easily differentiated and
hence can be incorporated into the above Jacobian calcula-
tions using the chain rule. The derivatives are:

Wk W

T = 1 = 2kuv
1]—u:2kuv 1]—V:l+3kv2+ku2
v v

The second extension to the above derivation handles
the situation where some features provide one constraint
(“gradient features’), others provide two constraints
(“ position features”) and the remainder are ignored. Start-
ing with the equation for gradient displacement:

_ ateye
Ddit = g Duj¢

where § is the unit gradient direction, we can con-

struct an error vector

2 Dd;, for all i that are gradient features
t =
DU for all i that are position features

- 2
The error norm becomes HHJDPt_EtH where we
have introduced the matrix H constructed as follows:

9149y 0 0 ..000
0 0 9,,9, 000
H =
0O 0 0 0 ..100
0O 0 0 0 ..010

|0 0 0 0 ..001

If a isthe number of gradient featuresthen H will have a
rows similar to the first two shown. These rows map 2D
displacements into gradient displacements essentially by
performing a dot product with the unit gradient. Likewise
if b is the number of position features then the bottom
right corner of H will be the 2b identity matrix. The
resulting size of H will be a+2b by 2N. We can then
solve thisin the same manner as before yielding:

> t -1 t=
DPt = ((HJ) (HJ)) (HJ) Et
While H'H isnot invertible, in general (HJ)'(HJ) is.

7. Results

We have implemented and tested the feature extrac-
tion and pose determination algorithms on both real and
synthetic data. The off-line feature extraction was devel-
oped on a UNIX platform using the Visualization Tool-
kit[14] as a framework. The on-line system is PC based
which, with a simple frame capture card, maintains pose
updates at over ten frames per second independent of the
size of the CAD model.

The top image in Figure 4 shows a portion of a CAD
model from a F110A exhaust duct and liner. The liner is
an undulating surface with numerous cooling holes. The
3D features extracted for a portion of this CAD model are
shown as small white spheres typically surrounding the
cooling holes. Note that there are no line segments or flat
surfaces to use for complex features. The bottom image in
Figure 4 shows a computer rendering of a simple CAD
model with some of the 3D feature positions shown as
white spheres. Note that some of the features are located at
changes in material properties, not just at range or normal
discontinuities.

Figure 5 shows two sample images from a Welch
Allen VideoProbe 2000 borescope. The image quality suf-



fers from the borescope’s small lens, narrow depth of
field, and relatively low resolution pixel array. These
images are typical of the input to the on-line pose estima-
tion algorithm.

To test the robustness of the on-line algorithm a set of
twelve video test sequences were captured that included a
wide variety of borescope motions within a CAD part. An
effort was made to collect a variety of movements without
consideration for how the pose estimation would perform.
For each frame of each sequence the probable errors in
position and orientation were recorded along with the
average correlation of the projected 3D features. The prob-
able error is calculated from the residual's of the SV D solu-
tion. The data from sequences two and three are shown in
Figure 6. In sequence two the positional error averages
one millimeter while the rotational error averages a quarter
degree (the volume being inspected is about one cubic
decimeter). The average confidence is about 0.07 which
may seem low given that an ideal match would be 1.0.
This low correlation isn’'t due to misalignment but rather
the small gradients found in typical borescope images. The
results for sequence three were similar except that near the
end the confidence starts to fall while the positional and
rotational errors start to climb. Eventually this test
sequence failed due to a lack of features as the borescope
was brought up against awall.

Of the twelve test sequences, the on-line algorithm
was able to track nine of them without difficulty. Of the
three failed runs, one failed due to an interframe move-
ment too large for the algorithm to handle, the other two
failed due to a lack of features. First consider the failure
due to interframe movement. The on-line algorithm uses
first order motion prediction to handle borescope veloci-
ties that could otherwise cause it to fail. However, given a
large enough acceleration, the algorithm will fail because
the predicted feature locations are simply too far away
from where they were expected. The other two failures,
which includes sequence three, occurred as the borescope
was moved up to a wall. As expected, when the bores-
cope's input video contains little or no variability, thereis
no information to use in determining the pose. Given that
the borescope’s pose has six degrees of freedom the on-
line algorithm will require at least six “edgels’ in the input
video.

To validate the resulting pose estimates, videos were
made containing the original borescope video overlaid
with the CAD model according to the pose estimate. One
frame of an overlaid video sequence is shown in Figure 7.
The overlaid CAD model is shown as thick white lines.
Generating the overlaid image consists of rendering the
CAD model from the pose estimate, extracting edgel
chains from the rendered image, warping the edgel chains
according to the lens distortion model, and finally render-

ing the warped edgels chains as white lines on top of the
borescope video. On-line robustness measures include dis-
play of the SVD’s condition as well as the average normal -
ized cross-correlation of the projected 3D features onto the
video.

8. Conclusions

This paper has made three contributions to the area of
model based pose estimation. The first is its use of com-
puter graphics hardware to generate local features for pose
estimation. While there has been work on directly extract-
ing features from a CAD model, it has focused on catego-
rizing this information based on the direction of view, not
on location. It has also been based on visibility constraints
and geometric features. This paper goes further to consider
view direction, view position, material properties and
lighting conditions in determining features. The novel use
of computer graphics hardware makes this computation-
ally feasible for the large models found in industry. This
work has shown that computer renderings can be used as a
predictor of features for pose estimation. This approach
can be extended to provide more accurate feature predic-
tion by using more advanced rendering and lighting tech-
niques.

The second contribution isin the on-line pose estima-
tion, where a number of weaknesses in the current pose
estimation literature have been addressed. First, neither
high order features nor explicit feature extraction is
required from the input image. Instead, features precom-
puted from the CAD model and predicted from the previ-
ous pose are projected into the current image and matched
using simple, efficient correlation techniques. Based on
the matching results, each feature provides from zero to
two constraints on the pose estimate. The framework
incorporates radial lens distortions and the algorithm runs
at near frame rates on a personal computer.

The third contribution is in the consideration of large
industrial datasets. Many model based pose techniques
have not been designed to scale to models composed of a
million or more polygons. Issues include the combinato-
rics of matching, the reliability of matching, and the small
percentage of model features typically visiblein any single
view. Even though the requirements for borescope inspec-
tion differ from other applications, many of these issues
are universal when dealing with CAD models of industrial
parts. The techniques presented in this paper allow for on-
line pose estimation without any performance or accuracy
degradation for large, more complex, CAD models.

A few open issues arise from this work. The first is
how to improve feature selection from the rendered
images. When backprojecting detected image features
onto the CAD models using ray-polygon intersections, the



stability of the 3D position of the feature can be deter-
mined. For example, features caused by tangency between
the camera line of sight and a surface are unstable. These
unstable features should be removed from the feature set.
In addition, the selection of features could consider the
distribution of gradient directions in addition to the gradi-
ent intensities. This can prevent singular matrix problems
that occur when the gradient directions are closely aligned.

A related issue in the feature extraction is determining
where the sample points should be located and how many
of them to use. While we have used a simple regular grid,
this is inefficient for the structural variety found in CAD
models. A more advanced approach would start with a
sparse set of sample points and then locally subdivide the
volume based on some measure of feature quality. Thisis
basically an octree decomposition of the volume where the
error measure is based on the feature variability across the
octent. One measure of the feature variability is the test
presented in the previous paragraph. If the ratio of the fea-
tures rejected to the total number of features exceeds a
specified threshold, then the octent should be subdivided.
This would provide an adaptive distribution of sample
points throughout the model.

An open issue with the on-line pose estimation algo-
rithm involves the weighted average used in the feature
matching. Currently if a predicted feature lies between two
viable matches, the resulting error vector from the
weighted average will be roughly zero. This is not really
correct because the true error vector is the vector to one of
the two possible matches. What is correct, is to say that the
feature has no meaningful contribution to the error vector,
only to the overall confidence. As the weighted average
transitions from a bimodal to uni-modal distribution the
relevance of the error vector will increase. Somehow this
change in distribution must be taken into account in addi-
tion to the final result. One possibility is to modify the
error metric to include a weighting vector that represents
the confidence in the elements of the error vector.

While there are open issues to consider, this paper has
contributed a practical approach for model based pose esti-
mation. This approach handles industrial CAD models,
runs at frame rates, and requires no specia hardware.
These techniques developed to handle borescope and
endoscope inspection are valuable to most pose estimation
applicationsinvolving industrial CAD models.
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Figure 6. Results from test sequences two and three. The horizontal axis is the frame number
of the test run. The positional error is the probable error in centimeters for the borescope’'s
position as determined by the singular value decomposition. The rotational error is the total
probable rotational error for the three axes as determined by the singular value decomposi-
tion. The confidence is the average correlation of the projected features to the image. (Note
that the graphs have different scales)

10



Figure 4. Computer rendered images (partial views
from inside) of two CAD models with extracted 3D
feature locations overlaid as small white spheres.
Thetop imageisfrom aF110-A exhaust duct and the
bottom is from a test phantom
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Figure 5. Two sample images from a Welch
Allyn borescope placed inside two different
objects. The top image is from a F110-A exhaust
duct and the bottom is from a test phantom.
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Figure 7. CAD model overlaid onto borescope video.
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