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Abstract

Despite many successful applications of robust statis-
tics, they have yet to be completely adapted to many com-
puter vision problems. Range reconstruction, particularly
in unstructured environments, requires a robust estimator
that not only tolerates a large outlier percentage but also
tolerates several discontinuities, extracting multiple sur-
facesin an image region.

Observing that random outliers and/or points from
across discontinuitiesincrease a hypothesized fit's scale es-
timate (standard deviation of the noise), our new opera-
tor, called MUSE (Minimum Unbiased Scale Estimator),
evaluates a hypothesized fit over potential inlier setsvia an
objective function of unbiased scale estimates. MUSE ex-
tracts the single best fit from the data by minimizing its ob-
jective function over a set of hypothesized fits and can se-
guentially extract multiple surfaces from an image region.
We show MUSE to be effective on synthetic data modelling
small scale discontinuities and in preliminary experiments
on complicated range data.

1 Introduction

A dtatistical method or estimator is considered robust
if it can continue to operate successfully as the data di-
verges from the estimator’s target distribution. Applying
this notion to regression analysis, a robust fitting proce-
dure should be able to extract a good fit despite a portion
of the data being corrupted with random outliers. Robust
operators are ideal for many computer vision applications
since gross errors can be introduced by both sensors and
low-level processing algorithms. In fact, robust techniques
have been very successful in many computer vision appli-
cations [8, 15]; however, the greatest success is achieved
when the goal is to identify or extract a single signal cor-
rupted with random outliers.

Unfortunately, many computer vision applications do
not fit this model of singly isolated objects corrupted with
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outliers. For instance, in range reconstruction, robust oper-
atorsare used to estimate surface parametersin small image
windows. Each window has the potential to contain data
from multiple surfaces. These surfaces may be overlapping
in the case of pseudo-transparency, for example chain link
fences; and one or all of the surfaces may contain less than
50% of theregion’sdata. Furthermore, whenever multiple
surfaces are in a region, range sensors are likely to intro-
duce random outliers aligned with the discontinuities. Re-
construction accuracy requires that all surfacesin aregion
be extracted, the random outliersignored, and the extracted
fits not bridge across the discontinuities (particularly in re-
verse engineering where accuracy is needed for small scale
discontinuities, i.e. step heights < 100).

Figures3(a) and 6(b) illustrate the problemswith range
data. In Figure 3(a), two surfaces of equal size are sepa-
rated with a step height of 8o and corrupted with 10% out-
liers. Thus, each surface containsless than 50% of the data.
While the discontinuity and segmentation seem readily ap-
parent, this scenario remains problematic for robust estima-
tors. Figure 6(b) shows actual range data of aninbox, afew
cardboard boxes, and a small flower pot. This data con-
tains pseudo transparent regions (background surface vis-
ible through the grates of the inbox) and a large number of
outliers (which tend to align with the discontinuities).

Standard robust regression techniques [4, 12] simply
are not designed to address these issues. They are designed
to extract asingle surface whose dataiis corrupted with out-
liers, not to robustly extract multiple surfaces. While these
robust regression techniques can be applied in a sequential
fashion, extracting a second surface from aregion once the
inliers to the first surface have been removed, etc., these
techniques are biased at the outset by the coherent structure
of data from multiple surfaces, preferring to extract a sur-
face that bridges across the discontinuity [13]. Thisis par-
ticularly evident whenever all the surfaces contain less than
50% of the data or when the size of the discontinuity drops
below 100.

Even the robust fitting techniques developed by the
vision community are hampered by the complexities of
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range scenes. The fixed-band techniques of Hough trans-
forms[5], RANSAC [3], and Roth and Levine[11] require
accurate a priori noise estimates. Our initia experiments
with range data indicate noise varies with depth, image po-
sition, and surface material, making a priori noise estima-
tion problematic. Furthermore, these techniques have diffi-
culty with small scale discontinuities[13]. Stewart's MIN-
PRAN operator [ 14] toleratesthelarge number of outliersin
range images and identifies regions composed compl etely
of outliers; but MINPRAN'’s assumptions about the outlier
distribution are not sufficient for extracting multiple sur-
faces. Finally, the surface growing techniques of Mirzaand
Boyer [10], Leonardisetal. [7], and Darrell et al. [1] arede-
signed specifically to extract multiple surfaces. However,
these techniques rely on good seed fits, which are usually
obtained using robust estimators, and therefore susceptible
to the problems discussed above.

The two goalsfor our operator are an ability to extract
surfaces containing less than 50% of the data and an abil-
ity to detect small scale discontinuities. First, our objec-
tive function rates a hypothesized fit based on a series of
unbiased robust scale estimates (variance in fit residuals)?®.
Each scale estimate s, is based on the fit's k smallest abso-
lute residuals, and afit’s representative scale estimate is the
minimum of its s, values. The unbiased scale estimates for
aset of hypothesized fits are compared, and the fit with the
smallest unbiased scale estimate is extracted.

Minimizing unbiased scale estimates within and be-
tween hypothesized fits produces robustnessto outliersand
largescalediscontinuities. Outliers' characteristically large
residuals produce large scale estimates. By minimizing s
over agivenfit, thefit's representative scale estimate is not
dominated by outliers. Comparing unbiased scal e estimates
between fits produces robustness to large scale discontinu-
ities (step heights > 80) sinceabridgingfit'srepresentative
scale estimate tends to overestimate the true scale.

Second, to address small scale discontinuities, our op-
erator can compare unbiased scale estimates for hypothe-
sized fits defined over different subsets of aregion?. Here,
scale estimates are localized to a sub-region defined by the
hypothesized fit, creating the potential for the data consid-
ered to be from asingle surface. Such afit will haveascae
estimate smaller than that of a bridging fit, even for small
magnitude discontinuities.

The remainder of this paper details our new estima-
tor, concentrating on the two features outlined above, and
showing how to embed the estimator in a sequential sur-
face extraction algorithm. The presentation emphasizesde-
velopment of the robust technique, and as such, the pre-

1The estimates are unbiased for a target distribution — such as mea-
surements from a single surface. The estimates are not necessarily unbi-
ased for mixture distributions — such as measurements at a discontinuity.
20ur scale estimates are unbiased regardless of point set size.

sented extraction algorithmislimited to extracting multiple
planar approximationsin each window. A complete range
segmentation algorithm and higher order surface extraction
await future development.

As afinal preliminary note, we were inspired to de-
velop our new estimator by a recent, related technique
called ALKS[6] (communicated to us by Peter Meer). Al-
though ALKSislimited inits ability to handle extreme out-
liers, andisthereforenot directly comparableto our new es-
timator, it did open our eyesto the possibility of developing
this estimator. We will discussthis further in Section 3.

2 Least Median of Squares

We begin with a review of Least Median of Squares
(LMS) [12] since MUSE builds on LMS's computational
techniqueand its ability to robustly estimate the variancein
the data. LMS has been very successful when applied to a
lonesignal corrupted with outliersbut isless effectivewhen
presented with multiple surfaces and fails completely if a
signal contains fewer than 50% of the data.

LM S searches aspace of hypothesized fits using an ob-
jective function based on the median squared residual

min median rZ;,
8 i i,0

where ria istheresidual of the it" data point measured rel-
ative to the hypothesized fit 6. To search efficiently, LMS
usualy employs random sampling [12][Chapter 5].

Animportant aspect of LM Sisits ability to simultane-
ously generate a robust estimate of the variance in the in-
liers. LMS's scale estimate is defined as

G = CV median r?;, (1)
1 )

where C is a constant chosen to make 6 unbiased for a par-
ticular target distribution. If the inlying data is Gaussian
distributed, then C = 1.4826(1+5/(N — p)) [12], where
N is the number of data points, the factor 1.4826 is the in-
verse of the expected value of the median residual from a
standardized (unit variance) Gaussian distribution, and (1+
5/(N — p)) correctsfor small point sets.

3 MUSE objective function

Traditionally, LMSis presented as minimizing the me-
dian squared residual. However, LMS can be equivalently
viewed as minimizing the unbiased scale estimate in equa-
tion 1. From either viewpoint, LMS reguires a surface to
contain at least 50% of the region’sdata. \We can move past
thisrestriction—extracting surfaces with fewer than 50% of
the data and estimating accurate fits in the presence of mul-
tiple surfaces— by building upon LM S's scale estimate and
how this scale estimate is used.

LMS's scale estimate is unbiased when all the datais
from the target distribution (i.e. Gaussianinliers). A small
number of outliersincrease the scale estimate slightly since



the median sgquared residual increases. Outliers number-
ing in excess of 50% increase the scale estimate dramati-
cally since the median squared residual is an outlier. How-
ever, ameaningful scale estimate can still be constructed us-
ing arank order statistic different from the median. This
maintains an objective function based on estimated scale;
but without a priori knowledge of theinlier percentage, we
need a means to compare scale estimates across hypothe-
sized inlier percentages.

Our new operator isbased on thisintuition. For any hy-
pothesized fit, our operator calculates an unbiased estimate
of the scale from the fit's k smallest (magnitude) residuals,
for al possible values of k, 1 < k < N — p (a fit defined
by randomly selecting p points has N — p residuals). The
smallest scale estimate over al possible k is the represen-
tative value for the hypothesized fit. Thisvalueisused in
comparing different hypothesized fits, the optimum fit hav-
ing smallest scale estimate. Inliersare then identified using
the optimum fit's scale estimate, G, i.e. those points with
r] <2.56.

3.1 Unbiased scale estimate, §¢

Constructing an unbiased scale estimate from the k
smallest absolute residuals is the key to MUSE. We use a
residual normalization method similar to LM S but compute
aseries of scale estimates and combinethem to produce our
scale estimate s.

Given aresidual density @(r;0) — @is the density of
random variabler having zero mean and standard deviation
0 — r can be written as a scaled random variableu from a
standardized distribution (u ~ @(u; 1) and r = ou). Given
N pointsfrom ¢(r; ), the K" ordered absolute residual 1.y
can be written in terms of the ki ordered absolute residual
from a standardized distribution, ri.ny = ouen. Thisleads
to the scale estimate

MNeN
* Elued @
where E [uy.n] can be computed directly from @(u; 1)3.
There are many good estimates for E[ucn]. For
instance, if the density of signed standardized residuals
@(u; 1) is symmetric, then the expected values of ordered
absol ute standardized residuals can be approximated by

Euen] ~ @05+ (1+ ), 6)

where ®(u, 1) is the cumulative distribution of the signed
standardized residuals.

Equation 2 converts each residual to a hypothesized fit
into a scale estimate. To create a scale statistic summariz-
ing the first k residuas, we could compute a weighted lin-
ear combination of 5, valuesfor k' < k, where the weights

3To compute E [uy.], convert @(u; 1) to adensity for |ul, form the order
statistic density f(u.n) [2], and integrate to cal cul ate the expected values.

are derived from the covariance between the s¢’s. How-
ever, ordering the absolute residuals creates highly corre-
lated s¢ variables. Therefore combining s variables via
any weighted linear combination does not produce an esti-
mate marketedly better (intermsof variancein the estimate)
than simply using s, as the scale estimate for the first k ab-
solute residuals.*

3.2 MUSE at adiscontinuity

The effectiveness of minimizing unbiased scale esti-
mates between hypothesized fitswhen the datais composed
of multiplesurfacesisillustrated in Figure 1. We consider a
step discontinuity between two surfaces of equal size, hav-
ing unit variance Gaussian inliers, and corrupted with 10%
outliers. Using analysistools developed in [13], we calcu-
late the expected absolute residuals for two hypothesized
fits — one a correct fit to one side of the discontinuity, the
other afit bridging the discontinuity —and cal cul atethe min-
imum s, for each fit using equation 2.

For intermediate and large step heights, the correct fit's
minimum s, is smaller than the bridging fit's minimum s,
implying our new estimator should select a correct fit even
though each surface contains less than 50% of the data.
However, MUSE till prefers a bridging fit at small step
heights because it can find a large amount of data packed
tightly about the bridging fit. Thisissueis addressed by the
extension to MUSE presented in Section 4.

Finally, the correct fit's minimum s, is nearly a con-
stant overestimate with respect to step height. It is a con-
stant since the minimum s, never directly depends on the
55% of the data not from the correct fit. It is an overesti-
mate because this 55% indirectly affects the inlying data’'s
scale estimate by shifting E[uy.\] for theinliers.
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Figure 1: The minimum of the expected values of 5 at a fit
bridging a step discontinuity and at a correct fit to one side

of the discontinuity. 0 = 1 is the true scale.

3.3 Variancein g

Givendatafromthetarget distribution, the N scale esti-
mates from equation 2 are al unbiased; however, their vari-
ability differsdramatically. Figure 2(a) shows the variance

“Leeet al. [6] useasimilar scale estimate as part of their reconstruction
technique, but not as the objective function and do not compensate for the
estimate's variability nor for the bias introduced during minimization.



of each s for N = 100 unit variance Gaussian points°. Note
for small k, the standard deviation in s, approaches g, i.e.
the scale estimate s, varies as much as any given residual .

Thelarge variancein the first few s's affects the min-
imum s, for the hypothesized fit. In Figure 2(b), we plot
E[mins|k], the expected value® of s, given that residual k
produced the minimum scale estimate over all N residuals.
The large variance in the first few s.'s can cause the mini-
mum s, for afit to be a severe underestimate of the scale.

However, the variance in s and E[mins|k] both “con-
verge” relatively quickly: whilethestandard deviationins;
is approximately 10 times the standard deviation in sqq, the
standard deviation in s, isonly 3 times that of sqg. There-
fore, we can increase the stability of our scale estimates —
while still tolerating a large outlier percentage and still ex-
tract surfaces with less than 50% of the data — by simply
ignoring the scale estimates from the first 10-15% of the
sorted absolute residuals’.
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Figure 2: (a) Standard deviation in S¢. (b) Empirical plot of
the expected minimum value S, given absolute residual k
produces the minimum scale estimate.

3.4 Correcting for bias dueto minimization

Selecting the minimum scal e estimate as the represen-
tative valuefor ahypothesizedfit biasesthe estimatelow (in
Figure 2(b), the expected minimums are all below the true
scale g = 1). Inorder to compare minimum scale estimates
between hypothesized fits, we must correct for this bias.

An unbiased minimum scale estimate for a hypothe-
sized fit isconstructed by normalizingtheminimum ;. The
normalization factor is the expected value of the minimum
scale estimate from the standardized distribution given that
the minimum occurs at absolute residual k, i.e.

min
I Sk

E[minvg [K = argIEninsk} ’

6= 4
where v, represents the k" scale estimate from a standard-
ized distribution. E[minv|k] can be calculated in O(N®)
time using adynamic programming algorithm (see[9]) and
stored in atable for MUSE.

5The variance of s, can be calculated from the variance in ry.y since
they arelinearly related. See David [2] for the density of ry.y.

6Section 3.4 discusses the calculation of E[mins|K].

7In our implementation, the user sets this percentage. In the remainder
of the presentation, we represent the number of points “ignored” by kg — 1.

3.5 Extracting multiple surfaces

To process a complete range image, we partition the
image into small regions or windows, alowing MUSE to
sequentially extract multiple surfaces from each window.
The stepsin processing each window are:

0 Determine the number of random samples needed to
extract the next surface.

O For each random samplefit:
O Cdlculate the sorted absolute residuals, ri:n.
O For k> kg, calculate ¢ = ren/E[uken)-
O Assign sg to ming>, Sk-
0 Convert s to an unbiased estimate
Op = IEQIQS‘/E [minvy | K = arkgznklms‘].

Select the random sample fit & with the smallest 5.
Removeall data pointswithin udy of the optimum fit.
If the window contains another surface, goto (.
Refine scale estimates for the region’sfits using points

within window with small enough residuals,
%=, inS-rregi)on(ri7é| Il < HOp)-
0 Assign each region data point to the surface to which
it has the smallest normalized residual if r /G5 < .

O If a surface has enough inliers, refine fit using least
squares on identified inliers.

O oOooo

Determining the number of random samplesin step O
depends on the amount of data remaining, the expected
number of surfacesremaining in the data, and the expected
number of outliers (see [14]). Overall, assuming the nor-
malizing factors are stored in look-up tables, the algorithm
requires O(NIogN) time to analyze each hypothesized fit.
Thistimeis comparableto that of LMS.

Steps 0 and O hinge on distinguishing between data
that is arandom collection of outliers and data that has an
underlying surface structure. We are pursuing two tech-
niques to address this need. The first leverages off the
strengths of Stewart’'s MINPRAN operator [14]. The sec-
ond searches the data for reliable statistical asymmetries.

3.6 Examples

Figure 3 showsfour steps of the above algorithm oper-
ating on 2D data. The scene containsasmall step disconti-
nuity of 80, 10% random outliers, with each surface having
less than 50% of the data. Multiple surfaces are success-
fully extracted.

Section 3.2 predicted MUSE will not alwaysfit correct
surfacesat small magnitudediscontinuities. Figure4 shows
adataset, similar to the previousone, but wherethefirst sur-
faceextractedisabridgingfitincorporatingalmost all of the
inliersto both surfaces.



Original Data First Surface Extracted Points Available for Second Extraction Two Extracted Surfaces
30 30 30 30
20 20 20 20
10 RECIRRE PR = S s s vad 10 10 PR PR
Op, 2 oniate Slou s Op, 2wt PPN Op, S wste S [ T S ML
-10 -10 -10 ’ -10
-2 -2 -2 -2 N
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 1 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
@) (b) (©) (d)

Figure 3: (a) Multiple surface range data with a step height of 80 and 10% outliers. (b) First surface extracted. (c) Points
remaining after the potential inliers to the first surface are removed. (d) Final reconstruction. Two surfaces and their inliers
have been identified. “x™'s mark the points not assigned to any surface and hence are outliers.
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Figure 4: MUSE can still produce bridging fits to small step
height discontinuities. Left: Bridging fit to a step height of
80. Right: Points remaining after potential inliers to the
bridging fit have been removed.

4 Interior point selection

MUSE successfully tolerates large outlier percentages
and can extract surfaces containing less than 50% of the
data. However, MUSE till prefers a bridging fit at small
discontinuities (Figure 4) becauseit overestimatesthe scale
at acorrect fit (Section 3.2). Equation 2 assumes all N data
pointsarefrom asingle surface, normalizingtheinliersat a
correct fit by too small afactor whenever thereare multiple
surfaces (for inliers numbering N’ < N, E[uin] < E[uUen])-

Ideally, we should base our scale estimate on only the
inliers to a hypothesized fit, eliminating the residuals from
across discontinuities from contention for producing the
minimum s andin calculating E[uy.n]. While suchalocal-
ization of theinliersisimpossible, we can approximatethis
behavior by considering only the residuals “interior to” the
random sample (i.e. those points whose independent vari-
ables are inside the convex hull of the random sample’sin-
dependent variables). If the random sample points are all
from the same surface, then it is likely the interior datais
from that same surface (pseudo transparency aside). Thus,
the value N used in equation 2 is the number of interior
samples and the overestimate due to multiple surfaces is
avoided.

While there is no guarantee that a given random sam-
ple will contain points from a single surface, the random
sampling process (probabilistically) guaranteesthat at least
one random sample will contain points from a single sur-

face. Therefore, at least one hypothesized fit should bene-
fit frominterior point selection, allowing it be distinguished
from bridging fits which would still overestimate the scale.

4.1 Alterationsto extraction algorithm

Supporting interior point selection requires two alter-
ationsto the random sampling process. First, the pointsin-
terior to the random sample (or its convex hull when fitting
higher order surfaces) need to be gathered efficiently. Sec-
ond, each random sample needs to contain enough interior
points to generate stable s, values (N’ > kg, Section 3.3).

4.2 Drawback tointerior point selection

Interior point selection can removethe overestimatein
scale due to multiple surfaces; however, the variancein the
scale estimate increases since the estimate is based on a
smaller number of points. Thestatistical efficiency of anin-
terior point selection estimate can be increased by requiring
random samples to bound larger sets of interior points. As
an dternative, we choose to perform an intermediate |east
sgquaresfit on the interior pointsidentified asinliers (resid-
ualswithin uGy), refining the fit and scale estimates before
different hypothesized fits are compared.

5 MUSEversusLMS

Figure 5 compares the empirical performance of
MUSE and LMS. Our performance metric is the ratio
of (1) the average bias between the optimal fit extracted
and the correct fit, and (2) the average bias between the
least squares fit and the correct fit. A bias ratio of zero
indicatesthe extracted fit isthe correct fit and abiasratio of
1 indicates the extracted fit is near the least squaresfit (i.e.
a bridging fit). Figure 5 shows the bias ratio for MUSE,
the interior point selection version of MUSE, and LM Sfor
avariety of step and crease height discontinuities. On the
|eft, there are 10% outliers and 50% of the good points are
from each surface, i.e. each surface contains less that 50%
of the data. On the right, there are 10% outliers but now
one of the surfaces contains 65% of the good data.

Regardless of discontinuity magnitude, MUSE outper-
formsLMS. WhileLM S selectsafit approximatingtheleast
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Figure 5: Empirical comparison of MUSE and LMS using
a bias ratio metric. Solid curve = LMS. Dashed curve =
MUSE. Dotted curve = MUSE Interior. Left: Each surface
contains less than 50% of the points. Right: Largest surface
contains 58.5% of the data.

squares fit when all surfaces contain less than 50% of the
data, MUSE selects the correct fit with increasing proba-
bility as the discontinuity magnitude increases. For small
magnitude discontinuities, the interior point selection ver-
sion of MUSE shows a substantial improvement over the
standard MUSE and LM S. However, the decreased statisti-
cal efficiency associated with interior point selection causes
it to exhibit more bias than the standard version of MUSE
at large magnitude discontinuities.

6 Discussion and Results

Figure 6 illustrates MUSE applied to a range scene
composed of an stack of plastic inboxes, a few cardboard
boxes, and asmall flower pot. Part (a) of thefigureshowsan
intensity image of the scene. Part (b) showsthe input range
data. Each range measurement is shown as a small octahe-
dron, shaded according to its depth. Notice the range data
has numerous outliers and that portions of the cardboard
boxes can be seen through the grates in the inbox (pseudo-
transparency). Also note the inbox has a small lip (small
step discontinuity) highlighting the borders of each tray.

Figure 6(c) and (d) show the reconstructed range data.
In part (c), MUSE was allowed to extract at most one sur-
face from each 11 x 11 window. MUSE has eiminated
the outliersin the scene, reconstructed portions of the card-
board boxes appearing “behind” the grate of the inbox, and
for themost part it did not combinethe small step height lip
around the inbox trays. In part (d), MUSE was allowed to
extract at most two surfacesfrom each window. Here, more
of the grates of the inbox have been reconstructed, more of

the cardboard boxes appearing behind the grates have been
reconstructed, and several other regions of the rangeimage
have been filled.

Figure 6(e) and (f) show the surfaces extracted in parts
(c) and (d). There are afew bridging fits between the small
lip of theinbox and tray surface and a bridging fit connects
an inbox grate to the box lying behind the grate.

7 Conclusion

Current robust estimators suffer from several limita-
tions when applied to data from multiple surfaces, such as
near a depth or orientation discontinuity. No existing tech-
nique handles small magnitude discontinuities, and without
knowledge of the noise in the data or the outlier distribu-
tion, no existing technique reconstructs surfaces containing
fewer than half the points. Our new operator, MUSE, isde-
signed to address both of these problems. By minimizing
unbiased scale estimates within and between hypothesized
fits, MUSE is robust to large outlier percentages and inter-
mediate and large magnitude discontinuities. By localizing
a hypothesized fit's scal e estimates to the pointsinterior to
the random sample, MUSE can reconstruct small magni-
tude discontinuities.

We have demonstrated MUSE's effectiveness statisti-
cally on synthetic range data and we have shown its appli-
cation to arange image of acomplicated scene. In ongoing
work, we will complete the theoretical analysis of MUSE,
thoroughly demonstrate its application to rea range data,
and incorporateit into asystem to reconstruct complete sur-
faces.
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