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Abstract
Despite many successful applications of robust statis-

tics, they have yet to be completely adapted to many com-
puter vision problems. Range reconstruction, particularly
in unstructured environments, requires a robust estimator
that not only tolerates a large outlier percentage but also
tolerates several discontinuities, extracting multiple sur-
faces in an image region.

Observing that random outliers and/or points from
across discontinuities increase a hypothesized fit’s scale es-
timate (standard deviation of the noise), our new opera-
tor, called MUSE (Minimum Unbiased Scale Estimator),
evaluates a hypothesized fit over potential inlier sets via an
objective function of unbiased scale estimates. MUSE ex-
tracts the single best fit from the data by minimizing its ob-
jective function over a set of hypothesized fits and can se-
quentially extract multiple surfaces from an image region.
We show MUSE to be effective on synthetic data modelling
small scale discontinuities and in preliminary experiments
on complicated range data.

1 Introduction
A statistical method or estimator is considered robust

if it can continue to operate successfully as the data di-
verges from the estimator’s target distribution. Applying
this notion to regression analysis, a robust fitting proce-
dure should be able to extract a good fit despite a portion
of the data being corrupted with random outliers. Robust
operators are ideal for many computer vision applications
since gross errors can be introduced by both sensors and
low-level processing algorithms. In fact, robust techniques
have been very successful in many computer vision appli-
cations [8, 15]; however, the greatest success is achieved
when the goal is to identify or extract a single signal cor-
rupted with random outliers.

Unfortunately, many computer vision applications do
not fit this model of singly isolated objects corrupted with
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outliers. For instance, in range reconstruction, robust oper-
ators are used to estimate surface parameters in small image
windows. Each window has the potential to contain data
from multiple surfaces. These surfaces may be overlapping
in the case of pseudo-transparency, for example chain link
fences; and one or all of the surfaces may contain less than
50% of the region’s data. Furthermore, whenever multiple
surfaces are in a region, range sensors are likely to intro-
duce random outliers aligned with the discontinuities. Re-
construction accuracy requires that all surfaces in a region
be extracted, the random outliers ignored, and the extracted
fits not bridge across the discontinuities (particularly in re-
verse engineering where accuracy is needed for small scale
discontinuities, i.e. step heights ≤ 10σ).

Figures 3(a) and 6(b) illustrate the problems with range
data. In Figure 3(a), two surfaces of equal size are sepa-
rated with a step height of 8σ and corrupted with 10% out-
liers. Thus, each surface contains less than 50% of the data.
While the discontinuity and segmentation seem readily ap-
parent, this scenario remains problematic for robust estima-
tors. Figure 6(b) shows actual range data of an inbox, a few
cardboard boxes, and a small flower pot. This data con-
tains pseudo transparent regions (background surface vis-
ible through the grates of the inbox) and a large number of
outliers (which tend to align with the discontinuities).

Standard robust regression techniques [4, 12] simply
are not designed to address these issues. They are designed
to extract a single surface whose data is corrupted with out-
liers, not to robustly extract multiple surfaces. While these
robust regression techniques can be applied in a sequential
fashion, extracting a second surface from a region once the
inliers to the first surface have been removed, etc., these
techniques are biased at the outset by the coherent structure
of data from multiple surfaces, preferring to extract a sur-
face that bridges across the discontinuity [13]. This is par-
ticularly evident whenever all the surfaces contain less than
50% of the data or when the size of the discontinuity drops
below 10σ.

Even the robust fitting techniques developed by the
vision community are hampered by the complexities of
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range scenes. The fixed-band techniques of Hough trans-
forms [5], RANSAC [3], and Roth and Levine [11] require
accurate a priori noise estimates. Our initial experiments
with range data indicate noise varies with depth, image po-
sition, and surface material, making a priori noise estima-
tion problematic. Furthermore, these techniques have diffi-
culty with small scale discontinuities [13]. Stewart’s MIN-
PRAN operator [14] tolerates the large number of outliers in
range images and identifies regions composed completely
of outliers; but MINPRAN’s assumptions about the outlier
distribution are not sufficient for extracting multiple sur-
faces. Finally, the surface growing techniques of Mirza and
Boyer [10], Leonardis et al. [7], and Darrell et al. [1] are de-
signed specifically to extract multiple surfaces. However,
these techniques rely on good seed fits, which are usually
obtained using robust estimators, and therefore susceptible
to the problems discussed above.

The two goals for our operator are an ability to extract
surfaces containing less than 50% of the data and an abil-
ity to detect small scale discontinuities. First, our objec-
tive function rates a hypothesized fit based on a series of
unbiased robust scale estimates (variance in fit residuals)1.
Each scale estimate sk is based on the fit’s k smallest abso-
lute residuals, and a fit’s representative scale estimate is the
minimum of its sk values. The unbiased scale estimates for
a set of hypothesized fits are compared, and the fit with the
smallest unbiased scale estimate is extracted.

Minimizing unbiased scale estimates within and be-
tween hypothesized fits produces robustness to outliers and
large scale discontinuities. Outliers’ characteristically large
residuals produce large scale estimates. By minimizing sk

over a given fit, the fit’s representative scale estimate is not
dominated by outliers. Comparing unbiased scale estimates
between fits produces robustness to large scale discontinu-
ities (step heights> 8σ) since a bridging fit’s representative
scale estimate tends to overestimate the true scale.

Second, to address small scale discontinuities, our op-
erator can compare unbiased scale estimates for hypothe-
sized fits defined over different subsets of a region2. Here,
scale estimates are localized to a sub-region defined by the
hypothesized fit, creating the potential for the data consid-
ered to be from a single surface. Such a fit will have a scale
estimate smaller than that of a bridging fit, even for small
magnitude discontinuities.

The remainder of this paper details our new estima-
tor, concentrating on the two features outlined above, and
showing how to embed the estimator in a sequential sur-
face extraction algorithm. The presentation emphasizes de-
velopment of the robust technique, and as such, the pre-

1The estimates are unbiased for a target distribution — such as mea-
surements from a single surface. The estimates are not necessarily unbi-
ased for mixture distributions — such as measurements at a discontinuity.

2Our scale estimates are unbiased regardless of point set size.

sented extraction algorithm is limited to extracting multiple
planar approximations in each window. A complete range
segmentation algorithm and higher order surface extraction
await future development.

As a final preliminary note, we were inspired to de-
velop our new estimator by a recent, related technique
called ALKS [6] (communicated to us by Peter Meer). Al-
though ALKS is limited in its ability to handle extreme out-
liers, and is therefore not directly comparable to our new es-
timator, it did open our eyes to the possibility of developing
this estimator. We will discuss this further in Section 3.

2 Least Median of Squares
We begin with a review of Least Median of Squares

(LMS) [12] since MUSE builds on LMS’s computational
technique and its ability to robustly estimate the variance in
the data. LMS has been very successful when applied to a
lone signal corrupted with outliers but is less effective when
presented with multiple surfaces and fails completely if a
signal contains fewer than 50% of the data.

LMS searches a space of hypothesized fits using an ob-
jective function based on the median squared residual

min
θ̂

median
i

r2
i,θ̂,

where ri,θ̂ is the residual of the ith data point measured rel-
ative to the hypothesized fit θ̂. To search efficiently, LMS
usually employs random sampling [12][Chapter 5].

An important aspect of LMS is its ability to simultane-
ously generate a robust estimate of the variance in the in-
liers. LMS’s scale estimate is defined as

σ̂θ̂ = C
√

median
i

r2
i,θ̂, (1)

where C is a constant chosen to make σ̂ unbiased for a par-
ticular target distribution. If the inlying data is Gaussian
distributed, then C = 1.4826(1 + 5/(N− p)) [12], where
N is the number of data points, the factor 1.4826 is the in-
verse of the expected value of the median residual from a
standardized (unit variance) Gaussian distribution, and (1+
5/(N− p)) corrects for small point sets.

3 MUSE objective function
Traditionally, LMS is presented as minimizing the me-

dian squared residual. However, LMS can be equivalently
viewed as minimizing the unbiased scale estimate in equa-
tion 1. From either viewpoint, LMS requires a surface to
contain at least 50% of the region’s data. We can move past
this restriction – extracting surfaces with fewer than 50% of
the data and estimating accurate fits in the presence of mul-
tiple surfaces – by building upon LMS’s scale estimate and
how this scale estimate is used.

LMS’s scale estimate is unbiased when all the data is
from the target distribution (i.e. Gaussian inliers). A small
number of outliers increase the scale estimate slightly since



the median squared residual increases. Outliers number-
ing in excess of 50% increase the scale estimate dramati-
cally since the median squared residual is an outlier. How-
ever, a meaningful scale estimate can still be constructed us-
ing a rank order statistic different from the median. This
maintains an objective function based on estimated scale;
but without a priori knowledge of the inlier percentage, we
need a means to compare scale estimates across hypothe-
sized inlier percentages.

Our new operator is based on this intuition. For any hy-
pothesized fit, our operator calculates an unbiased estimate
of the scale from the fit’s k smallest (magnitude) residuals,
for all possible values of k, 1 ≤ k ≤ N− p (a fit defined
by randomly selecting p points has N− p residuals). The
smallest scale estimate over all possible k is the represen-
tative value for the hypothesized fit. This value is used in
comparing different hypothesized fits, the optimum fit hav-
ing smallest scale estimate. Inliers are then identified using
the optimum fit’s scale estimate, σ̂, i.e. those points with
|r| ≤ 2.5σ̂.

3.1 Unbiased scale estimate, sksksk
Constructing an unbiased scale estimate from the k

smallest absolute residuals is the key to MUSE. We use a
residual normalization method similar to LMS but compute
a series of scale estimates and combine them to produce our
scale estimate sk.

Given a residual density φ(r;σ) — φ is the density of
random variable r having zero mean and standard deviation
σ — r can be written as a scaled random variable u from a
standardized distribution (u ∼ φ(u;1) and r = σu). Given
N points from φ(r;σ), the kth ordered absolute residual rk:N
can be written in terms of the kth ordered absolute residual
from a standardized distribution, rk:N = σuk:N. This leads
to the scale estimate

sk =
rk:N

E [uk:N]
(2)

where E [uk:N] can be computed directly from φ(u;1)3.
There are many good estimates for E [uk:N]. For

instance, if the density of signed standardized residuals
φ(u;1) is symmetric, then the expected values of ordered
absolute standardized residuals can be approximated by

E [uk:N]≈Φ−1
(

0.5∗ (1 + k
N+1 )

)
, (3)

where Φ(u,1) is the cumulative distribution of the signed
standardized residuals.

Equation 2 converts each residual to a hypothesized fit
into a scale estimate. To create a scale statistic summariz-
ing the first k residuals, we could compute a weighted lin-
ear combination of sk′ values for k′ ≤ k, where the weights

3To compute E [uk:N], convert φ(u;1) to a density for |u|, form the order
statistic density f (uk:N) [2], and integrate to calculate the expected values.

are derived from the covariance between the sk′ ’s. How-
ever, ordering the absolute residuals creates highly corre-
lated sk variables. Therefore combining sk′ variables via
any weighted linear combination does not produce an esti-
mate marketedly better (in terms of variance in the estimate)
than simply using sk as the scale estimate for the first k ab-
solute residuals.4

3.2 MUSE at a discontinuity
The effectiveness of minimizing unbiased scale esti-

mates between hypothesized fits when the data is composed
of multiple surfaces is illustrated in Figure 1. We consider a
step discontinuity between two surfaces of equal size, hav-
ing unit variance Gaussian inliers, and corrupted with 10%
outliers. Using analysis tools developed in [13], we calcu-
late the expected absolute residuals for two hypothesized
fits – one a correct fit to one side of the discontinuity, the
other a fit bridging the discontinuity – and calculate the min-
imum sk for each fit using equation 2.

For intermediate and large step heights, the correct fit’s
minimum sk is smaller than the bridging fit’s minimum sk,
implying our new estimator should select a correct fit even
though each surface contains less than 50% of the data.
However, MUSE still prefers a bridging fit at small step
heights because it can find a large amount of data packed
tightly about the bridging fit. This issue is addressed by the
extension to MUSE presented in Section 4.

Finally, the correct fit’s minimum sk is nearly a con-
stant overestimate with respect to step height. It is a con-
stant since the minimum sk never directly depends on the
55% of the data not from the correct fit. It is an overesti-
mate because this 55% indirectly affects the inlying data’s
scale estimate by shifting E[uk:N] for the inliers.
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Figure 1: The minimum of the expected values of sk at a fit
bridging a step discontinuity and at a correct fit to one side
of the discontinuity. σ = 1 is the true scale.

3.3 Variance in sksksk
Given data from the target distribution, the N scale esti-

mates from equation 2 are all unbiased; however, their vari-
ability differs dramatically. Figure 2(a) shows the variance

4Lee et al. [6] use a similar scale estimate as part of their reconstruction
technique, but not as the objective function and do not compensate for the
estimate’s variability nor for the bias introduced during minimization.



of each sk for N = 100 unit variance Gaussian points5. Note
for small k, the standard deviation in sk approaches σ, i.e.
the scale estimate s1 varies as much as any given residual.

The large variance in the first few sk’s affects the min-
imum sk for the hypothesized fit. In Figure 2(b), we plot
E[mins|k], the expected value6 of sk given that residual k
produced the minimum scale estimate over all N residuals.
The large variance in the first few sk’s can cause the mini-
mum sk for a fit to be a severe underestimate of the scale.

However, the variance in sk and E[mins|k] both “con-
verge” relatively quickly: while the standard deviation in s1
is approximately 10 times the standard deviation in s90, the
standard deviation in s10 is only 3 times that of s90. There-
fore, we can increase the stability of our scale estimates –
while still tolerating a large outlier percentage and still ex-
tract surfaces with less than 50% of the data – by simply
ignoring the scale estimates from the first 10-15% of the
sorted absolute residuals7.
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Figure 2: (a) Standard deviation in sk. (b) Empirical plot of
the expected minimum value sk given absolute residual k
produces the minimum scale estimate.

3.4 Correcting for bias due to minimization
Selecting the minimum scale estimate as the represen-

tative value for a hypothesized fit biases the estimate low (in
Figure 2(b), the expected minimums are all below the true
scale σ = 1). In order to compare minimum scale estimates
between hypothesized fits, we must correct for this bias.

An unbiased minimum scale estimate for a hypothe-
sized fit is constructed by normalizing the minimum sk. The
normalization factor is the expected value of the minimum
scale estimate from the standardized distribution given that
the minimum occurs at absolute residual k, i.e.

σ̂ =
min

k
sk

E
[
min vk′

∣∣ k′ = argmin
k

sk
] , (4)

where vk represents the kth scale estimate from a standard-
ized distribution. E[minv|k] can be calculated in O(N3)
time using a dynamic programming algorithm (see [9]) and
stored in a table for MUSE.

5The variance of sk can be calculated from the variance in rk:N since
they are linearly related. See David [2] for the density of rk:N .

6Section 3.4 discusses the calculation of E[mins|k].
7In our implementation, the user sets this percentage. In the remainder

of the presentation, we represent the number of points “ignored” by k0−1.

3.5 Extracting multiple surfaces
To process a complete range image, we partition the

image into small regions or windows, allowing MUSE to
sequentially extract multiple surfaces from each window.
The steps in processing each window are:

① Determine the number of random samples needed to
extract the next surface.

② For each random sample fit:

❶ Calculate the sorted absolute residuals, rk:N .
❷ For k≥ k0, calculate sk = rk:N/E[uk:N].
❸ Assign s∗θ̂ to mink≥k0

sk.
❹ Convert s∗θ̂ to an unbiased estimate

σ̂θ̂ = min
k≥k0

sk/E
[
minvk′

∣∣ k′ = argmin
k≥k0

sk
]
.

③ Select the random sample fit θ̂ with the smallest σ̂θ̂.

④ Remove all data points within µσ̂θ̂ of the optimum fit.

⑤ If the window contains another surface, goto ①.

⑥ Refine scale estimates for the region’s fits using points
within window with small enough residuals,

σ̂θ̂ = STD
i in region

(ri,θ̂ | |ri,θ̂| ≤ µσ̂θ̂).

⑦ Assign each region data point to the surface to which
it has the smallest normalized residual if r/σ̂θ̂ ≤ µ.

⑧ If a surface has enough inliers, refine fit using least
squares on identified inliers.

Determining the number of random samples in step ①
depends on the amount of data remaining, the expected
number of surfaces remaining in the data, and the expected
number of outliers (see [14]). Overall, assuming the nor-
malizing factors are stored in look-up tables, the algorithm
requires O(N logN) time to analyze each hypothesized fit.
This time is comparable to that of LMS.

Steps ⑤ and ⑧ hinge on distinguishing between data
that is a random collection of outliers and data that has an
underlying surface structure. We are pursuing two tech-
niques to address this need. The first leverages off the
strengths of Stewart’s MINPRAN operator [14]. The sec-
ond searches the data for reliable statistical asymmetries.

3.6 Examples
Figure 3 shows four steps of the above algorithm oper-

ating on 2D data. The scene contains a small step disconti-
nuity of 8σ, 10% random outliers, with each surface having
less than 50% of the data. Multiple surfaces are success-
fully extracted.

Section 3.2 predicted MUSE will not always fit correct
surfaces at small magnitude discontinuities. Figure 4 shows
a dataset, similar to the previous one, but where the first sur-
face extracted is a bridging fit incorporatingalmost all of the
inliers to both surfaces.
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Figure 3: (a) Multiple surface range data with a step height of 8σ and 10% outliers. (b) First surface extracted. (c) Points
remaining after the potential inliers to the first surface are removed. (d) Final reconstruction. Two surfaces and their inliers
have been identified. “x”’s mark the points not assigned to any surface and hence are outliers.
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Figure 4: MUSE can still produce bridging fits to small step
height discontinuities. Left: Bridging fit to a step height of
8σ. Right: Points remaining after potential inliers to the
bridging fit have been removed.

4 Interior point selection
MUSE successfully tolerates large outlier percentages

and can extract surfaces containing less than 50% of the
data. However, MUSE still prefers a bridging fit at small
discontinuities (Figure 4) because it overestimates the scale
at a correct fit (Section 3.2). Equation 2 assumes all N data
points are from a single surface, normalizing the inliers at a
correct fit by too small a factor whenever there are multiple
surfaces (for inliers numbering N′ <N, E[uk:N]< E[uk:N′ ]).

Ideally, we should base our scale estimate on only the
inliers to a hypothesized fit, eliminating the residuals from
across discontinuities from contention for producing the
minimum sk and in calculating E[uk:N′ ]. While such a local-
ization of the inliers is impossible, we can approximate this
behavior by considering only the residuals “interior to” the
random sample (i.e. those points whose independent vari-
ables are inside the convex hull of the random sample’s in-
dependent variables). If the random sample points are all
from the same surface, then it is likely the interior data is
from that same surface (pseudo transparency aside). Thus,
the value N used in equation 2 is the number of interior
samples and the overestimate due to multiple surfaces is
avoided.

While there is no guarantee that a given random sam-
ple will contain points from a single surface, the random
sampling process (probabilistically) guarantees that at least
one random sample will contain points from a single sur-

face. Therefore, at least one hypothesized fit should bene-
fit from interior point selection, allowing it be distinguished
from bridging fits which would still overestimate the scale.

4.1 Alterations to extraction algorithm
Supporting interior point selection requires two alter-

ations to the random sampling process. First, the points in-
terior to the random sample (or its convex hull when fitting
higher order surfaces) need to be gathered efficiently. Sec-
ond, each random sample needs to contain enough interior
points to generate stable sk values (N′ ≥ k0, Section 3.3).

4.2 Drawback to interior point selection
Interior point selection can remove the overestimate in

scale due to multiple surfaces; however, the variance in the
scale estimate increases since the estimate is based on a
smaller number of points. The statistical efficiency of an in-
terior point selection estimate can be increased by requiring
random samples to bound larger sets of interior points. As
an alternative, we choose to perform an intermediate least
squares fit on the interior points identified as inliers (resid-
uals within µσ̂θ̂), refining the fit and scale estimates before
different hypothesized fits are compared.

5 MUSE versus LMS
Figure 5 compares the empirical performance of

MUSE and LMS. Our performance metric is the ratio
of (1) the average bias between the optimal fit extracted
and the correct fit, and (2) the average bias between the
least squares fit and the correct fit. A bias ratio of zero
indicates the extracted fit is the correct fit and a bias ratio of
1 indicates the extracted fit is near the least squares fit (i.e.
a bridging fit). Figure 5 shows the bias ratio for MUSE,
the interior point selection version of MUSE, and LMS for
a variety of step and crease height discontinuities. On the
left, there are 10% outliers and 50% of the good points are
from each surface, i.e. each surface contains less that 50%
of the data. On the right, there are 10% outliers but now
one of the surfaces contains 65% of the good data.

Regardless of discontinuity magnitude, MUSE outper-
forms LMS. While LMS selects a fit approximating the least
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Figure 5: Empirical comparison of MUSE and LMS using
a bias ratio metric. Solid curve = LMS. Dashed curve =
MUSE. Dotted curve = MUSE Interior. Left: Each surface
contains less than 50% of the points. Right: Largest surface
contains 58.5% of the data.

squares fit when all surfaces contain less than 50% of the
data, MUSE selects the correct fit with increasing proba-
bility as the discontinuity magnitude increases. For small
magnitude discontinuities, the interior point selection ver-
sion of MUSE shows a substantial improvement over the
standard MUSE and LMS. However, the decreased statisti-
cal efficiency associated with interior point selection causes
it to exhibit more bias than the standard version of MUSE
at large magnitude discontinuities.

6 Discussion and Results
Figure 6 illustrates MUSE applied to a range scene

composed of an stack of plastic inboxes, a few cardboard
boxes, and a small flower pot. Part (a) of the figure shows an
intensity image of the scene. Part (b) shows the input range
data. Each range measurement is shown as a small octahe-
dron, shaded according to its depth. Notice the range data
has numerous outliers and that portions of the cardboard
boxes can be seen through the grates in the inbox (pseudo-
transparency). Also note the inbox has a small lip (small
step discontinuity) highlighting the borders of each tray.

Figure 6(c) and (d) show the reconstructed range data.
In part (c), MUSE was allowed to extract at most one sur-
face from each 11× 11 window. MUSE has eliminated
the outliers in the scene, reconstructed portions of the card-
board boxes appearing “behind” the grate of the inbox, and
for the most part it did not combine the small step height lip
around the inbox trays. In part (d), MUSE was allowed to
extract at most two surfaces from each window. Here, more
of the grates of the inbox have been reconstructed, more of

the cardboard boxes appearing behind the grates have been
reconstructed, and several other regions of the range image
have been filled.

Figure 6(e) and (f) show the surfaces extracted in parts
(c) and (d). There are a few bridging fits between the small
lip of the inbox and tray surface and a bridging fit connects
an inbox grate to the box lying behind the grate.

7 Conclusion
Current robust estimators suffer from several limita-

tions when applied to data from multiple surfaces, such as
near a depth or orientation discontinuity. No existing tech-
nique handles small magnitude discontinuities, and without
knowledge of the noise in the data or the outlier distribu-
tion, no existing technique reconstructs surfaces containing
fewer than half the points. Our new operator, MUSE, is de-
signed to address both of these problems. By minimizing
unbiased scale estimates within and between hypothesized
fits, MUSE is robust to large outlier percentages and inter-
mediate and large magnitude discontinuities. By localizing
a hypothesized fit’s scale estimates to the points interior to
the random sample, MUSE can reconstruct small magni-
tude discontinuities.

We have demonstrated MUSE’s effectiveness statisti-
cally on synthetic range data and we have shown its appli-
cation to a range image of a complicated scene. In ongoing
work, we will complete the theoretical analysis of MUSE,
thoroughly demonstrate its application to real range data,
and incorporate it into a system to reconstruct complete sur-
faces.
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