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Abstract
This paper describes a new model to range data reg-

istration algorithm, specifically designed for accuracy,
speed, and robustness. Like many recent registration tech-
niques, our Robust-Closest-Patch algorithm (RCP) itera-
tively matches model patches to data surfaces based on
the current pose and then re-estimates pose based on these
matches. RCP has several novel features: 1) on-line regis-
tration is driven by low curvature patches computed from
the model off-line; 2) an approximate normal distance be-
tween a patch and a surface is used, avoiding the need
to estimate local surface normal and curvature from noisy
data; 3) pose is solved exactly by a linear system in six
parameters, using a symmetric formulation of the rotation
constraint; 4) robustness is ensured using an M-estimator
that estimates both the rigid pose parameters and the error
standard deviation. Results are shown using models and
range data from turbine blade inspection.

1 Introduction
Automated inspection must be done both quickly and

accurately. We are currently developing a blade inspection
system which satisfies these two apparently conflicting re-
quirements by: 1) measuring blade surfaces using a fast
but low accuracy range sensor returning very dense sur-
face points, 2) registering 100,000’s of these points to get
an accurate global registration, 3) substracting these dense
points to the registered CAD surfaces to find shape defor-
mations. The 3D rigid transformation from the CAD model
to the actual blade is typically found in less than 5 sec-
onds on 400Mhz PC, and accurate to a standard deviation
of 1/100 the sensor noise.1

1We are part of the Consortium for Non-Contact Gauging, whose goal
is to rapidly and affordably measure aerospace and automotive parts 100
times faster than today’s coordinate measuring machines (CMMs) and 10
times more accurately than conventional gauging.

Funded with a NIST ATP grant, the consortium’s Rapid Agile Metrol-
ogy for Manufacturing (RAMM) project incorporates advanced range
sensor and software with CMM technology, to develop a shop floor sys-
tem that can inspect loosely fixtured parts by scanning the surfaces and
then aligning and comparing them to 3D CAD model for both in-process
and final inspections.

The registration problem has received considerable at-
tention, especially over the past five years, because it
must be solved in numerous application domains, includ-
ing medicine [9], object recognition [5, 7], robotic nav-
igation [16], inspection [18], and automatic model con-
struction [2, 4, 11, 17]. In spite of this work, a new so-
lution, building on existing techniques, is needed to meet
the demands of our application. Our solution must be ac-
curate, extremely efficient, and robust to gross errors, often
as many as 10-15% of the points.

The novel features of our algorithm can be seen by com-
paring it to related work, most notably Besl and McKay’s
Iterated Closest Point (ICP) algorithm [3] for register-
ing 3D data with a model and Chen and Medioni’s algo-
rithm [4] for registering multiple range images. Several
variations and improvements [2, 6, 16, 17, 22] on these
algorithms have been shown, most complete is Stewart et
al’s covariance-based framework and generalization [20].
Briefly, given an initial rigid pose, all of these algorithms
match each data point to its nearest point on the model sur-
face or in the second data set, compute the 3D rigid trans-
formation that best aligns these matches, and repeats these
two steps using the most recently estimated pose until con-
vergence. Our algorithm works in a similar framework, but
has the following novel features:

1. Low curvature patches are precomputed off-line from
the CAD model. These patches drive the on-line reg-
istration process from model to data, minimizing the
required computation and allowing enough patches to
be used to obtain the required accuracy.

2. An approximate normal distance between model
patches and data surfaces is used, avoiding the need
to estimate local surface normal and curvature from
noisy data. A theoretical framework is developed to

Members of the consortium include: Brown & Sharpe, CMM manufac-
turer and system integrator; GE Corporate R&D, developer of software
for part registration, surface reconstruction, and shape deformation anal-
ysis; Intelligent Automation Systems, developer of the 4DI coarse range
sensor; other users such as: GE Aircraft Engines for airfoils, Caterpillar
for crank shafts, Eaton for gears.
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Figure 1: Example model and range data.

prove the approximation and to contrast it with previ-
ous distance constraints.

3. Pose is solved by singular value decomposition of a
linear system in six parameters. The simplicity comes
from a linear and symmetric formulation of the rota-
tion constraint rather than quaternions or orthonormal
matrices.

4. Robustness to gross errors in the data is ensured with
an M-estimator that estimates both the rigid pose pa-
rameters and the error standard deviation.

2 Robust Closest Patch Algorithm
This section summarizes our Robust Closest Patch

(RCP) algorithm and presents experimental results. Novel
and theoretically important aspects of the normal distance
constraint and of the pose solution are discussed in Sec-
tions 3 and 4 respectively.

2.1 Sketch of Algorithm
Like most other recent algorithms for registering 3D

data sets or for registering 3D data with a model, RCP it-
erates two steps until convergence: it matches model and
data based on the current pose estimate, and then refines
the pose estimate based on these matches.

Much of the computation is done off-line by pre-
computing low curvature patches. Given the approximate
view point, the model surface can be digitized at regular
grid points on an image plane, local curvature checked,
and low curvature patches retained, giving a set of regu-
larly spaced patches. Each patchPi is represented by its
center positionpi and its outward normalni. Figure 1a
shows a shaded range image of the CAD model, seen from
an a priori view point. Normal and occluding patches are
shown by their surface normals. Figure 1b shows a range
image, interpolated from triangulated range data points.

The on-line computation for a given range data set
works as follows:

A.1 RCP translates the model patches to align the model’s
center of mass with that of the data. This is sufficiently
robust because the object can be isolated in the data. Initial
rotation is given by the assumed view point.

A.2 RCP repeats the following until convergence:

A.2.1 For each patchPi, it finds the matching location
qi by moving a matched filter, sized toPi, along the lineli,
throughpi and parallel toni, searching for the nearest sig-
nificant response from current locationpi (Figure 6). This
estimates the piercing point ofli with the implicit surface
from which the data are measured without the expensive
and noise sensitive process of estimating surface parame-
ters from the data [4]. As shown in Section 3, match point
qi is a good approximation of the ideal match forpi if the
patchPi has low curvature.

A.2.2 RCP estimates the incremental rigid transforma-
tion,�T = (R; t), by minimizing the sum of the squared,
approximate normal distances (8) between model patches
and data surfaces:

min
!;tw

X
i

[((I �W=2)qi � (I +W=2)pi � tw)
T
ni]

2:

(1)

In this norm, error is calculated by rotating the data and
model locations,qi andpi, each halfway toward the other,
then taking the dot product of their difference along the
model normalni. The least-squares pose minimization and
its robust version are discussed in Section 4.

Instead of using a quaternion or a small angle approx-
imation, rotationR is represented by the skew symmetric
matrixW , which describes the cross-product between a 3-
element rotation vector! = 2 tan �

2u and eitherpi or qi.
� is the angle andu is the unit vector of the axis of rotation.
The rotation vector! and translationtw are solved directly
from (1) with singular value decomposition, and then�T
is:

R = (I �W=2)�1(I +W=2)
t = (I +W=2)tw

(2)

A.2.3 RCP updates the positions and normals of the
model patches and accumulates the incremental transfor-
mation into the current pose:

pi = Rpi + t

ni = Rni
Tk+1 = �T � Tk

(3)

This entire registration process is embedded in a multi-
resolution framework for global convergence and speed,
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Figure 2: Absolute normal distance before and after regis-
tration.

using a small number of large patches at the coarsest
resolution to eliminate the largest registration errors and
lock into the global solution, and a large number of small
patches at the finest resolution for precise registration.
RCP has approximately linear time complexity in the num-
ber of model patches.

2.2 Experimental Results
RCP has been tested on 300 range data sets from 25 ac-

tual blades and 4 blade models with size varying from 2
to 6 inches. To illustrate, Figure 1 shows the CAD model
and range data of a 3 inch blade. The “dovetail”, appear-
ing below the platform in (a), is missing from (b). Also,
the blade in (b), which is “in process” and has not been
trimmed to its actual size, is longer than the model. Fig-
ure 2 shows the model and actual data sets over top of each
other, then the absolute of the normal distance computed,
before and after step 2 in RCP algorithm. Darker sections
show larger deviations. During the iterations, RCP trans-
lated the model down and rotated it about the vertical axis,
aligning the model and data platforms as well as their blade
surfaces. RCP effectively ignored the extra length on the
actual blade and treated missing sections of the model’s
dovetail as outlier patches. Errors in alignment appear
on the high-curvature blending areas where the airfoil and
platform meet.

Figure 3a shows original range data, with missing data
shown as white. Figure 3b shows the location of triangu-
lated points whose residual error is greater than3�. Note
how they form patches of different sizes, and how they oc-
cur close to missing data, or have larger deviations near
high curvature areas. These outlier points can only be de-
tected through solving for the robust pose of the object.
Their effect on the root mean square error is shown in Fig-
ure 4, with the first increase caused by random noise, and

a b

Figure 3: Noisy range data, and outliers withd(P; P 0) >
3�.

the second increase by outliers.

Several quantitative measures of RCP’s performance
can be given:

� Figure 5 shows the convergence of the robust RMS er-
ror, in mils, between model patches and data surfaces,
as a function of the number of iterations of the reg-
istration process. The initial rotation was 45 degrees
about the vertical axis. RCP typically converges in
4-5 iterations at each level of resolution.

� RCP converges quadratically if the robust
weights (16) are fixed, typically if registration is
within 1 pixel from its local minimum.

� RCP has correctly registered models with data con-
taining up to 15% outliers. It should be able to handle
higher percentages, but we have not seen these in our
data.

� Tests of RCP have shown it correcting rotation errors
of up to 60 degrees around each axis, separately. Of
course, this large domain of convergence depends in
part on the simple structure of the blade surfaces [3],
and on the overconstrained minimization with both
regular patches from visible surfaces and occluding
patches from outlines.

3 Constraints from Patches
To derive the least squares norm (1) used in RCP, this

section first introduces an ideal, symmetric distance mea-
sure (5) between model patches and data surfaces and
shows how its first-order approximation (8) used in RCP
eliminates the need to estimate local surface normal and
curvature from noisy data. It then demonstrates quantita-
tively why low curvature patches are superior to high cur-
vature landmarks such as corners and ridges, in terms of
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Figure 4: Effect of deformations, noise and outliers on
RMS error.
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Figure 5: Convergence for45o rotation about vertical axis.

representation completeness, registration accuracy, noise
tolerance, and surface coverage. Finally, low curvature
patches can also be used to capture the occluding surfaces
along the object’s outline.

3.1 Distance Along Average Normal

Let patchP be on the model surface, with mid pointp
and normaln defined a priori (Figure 6). Let patchP 0 be
inferred from the range data as part of a larger planar sur-
face with normaln0. Since the local patchP 0 has no de-
tectable boundaries or landmarks, its mid pointp0 can not
be found by local feature detection and matching. Instead,
the locationp0 corresponding to pointp is constructed to
be the projection ofp onto the infinite plane supporting
patchP 0, along the average normal�n:

n

q

q’

p

_
n

α
p’ n’

Figure 6: Deviation between planar patch and surface.

rt

Figure 7: Tangential sliding of patches leads to faster con-
vergence.

�n = n+n0

kn+n0k = n+n0

2 cos(�=2)

� = arcsin(kn ^ n0k)
(4)

The average of the two normals is meaningful ifnTn0 > 0,
which formalizes our assumption of rough alignment. In-
stead of constructingp0 based on the average normal�n,
intersection pointsq andq0 can be constructed by project-
ingp along the normaln [4] andn0 respectively. All three
are related, and so the distance measure between a model
patchP and a data surface containing patchP 0 can be con-
structed as:

d(P; P 0) = (p0 � p)T �n
= ((q � p)Tn)(cos�= cos(�=2))
= ((q0 � p)Tn0)= cos(�=2)

(5)

Note that the patchP 0 is free to rotate and translate tan-
gentially along its surface. Minimizing the normal dis-
tance between point and surface leads to much faster con-
vergence [4] to the final pose than minimizing the Eu-
clidean distance between model and matched points [3].
The translation and rotation of a vertical rectangle in Fig-
ure 7 requires only one instead of many registration iter-
ations (matching and pose refinement) if Euclidean point
distances are used: the convergence in the translation ex-
ample is at best quadratic. In both translation or rota-
tion examples, Euclidean point distances along the vertical
edges of the rectangle restrict tangential sliding of these
vertical patches, leading to not only slow convergence but
also multiple weak minima near the global minimum error.

3.2 Approximate Normal Distance
Let r be the local radius of curvature at the patchesP

andP 0 (Figure 8). The pointsq andq0 are now on the
curved patchP 0, and are found from the mid pointp of
patchP , along the normalsn andn0 respectively. The
distance measure between a curved patch and a curved sur-
face, is defined as:

d(P; P 0) = (p0 � p)T �n
� ((q � p)Tn+ r�2=8) (cos�= cos(�=2))
� ((q0 � p)Tn0 + r�2=8) = cos(�=2)

� � � d(P; P 0)=r

(6)
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Figure 8: Deviation between curved patch and surface.

The simplicity and symmetry in the above approxima-
tions depends on the assumption that the local radius of
curvaturer is greater than the absolute normal distance
jd(P; P 0)j. In particular, the curved arc between pointsq

andq0 makes an angle� at the mid pointp, and an angle
� at the center of curvature of the patchP 0. Using Taylor
expansions and eliminating�, local curvature is shown to
only add second order terms in�:

d(P; P 0) � (q� p)Tn (1 + (d(P; P 0)=r � 3) �2=8)
� (q0 � p)Tn0 (1 + (d(P; P 0)=r + 1) �2=8)

(7)

When� � 0 andr > jd(P; P 0)j, the following approxi-
mate normal distance between low curvature patches and
surfaces is used to avoid estimating local surface normal
and curvature from range data:

d(P; P 0) � (q� p)Tn (8)

3.3 Singular Patches
By definition a regular patch has a well defined surface

normal. A ridge segment or a corner point are instances
of surface singularity. The surface normal is non unique
at exactly a ridge segment or a corner point. However, if
the patches leading to the ridge (resp. corner) are planar,
or have low enough curvature, then the normal distance
constraints from these two (resp. three) patches are equiv-
alent to a collinearity (resp. coincidence) constraint from
the segment (resp. point) (Figure 9). For example, the
Euclidean distance between two corner pointsP andQ is
nothing but the aggregate of three normal distances along
three perpendicular axes:

�(P;Q)2 = (q� p)T (q � p)
= (qx � px)

2 + (qy � py)
2 + (qz � pz)

2

=
P

n2fx;y;zg ((q � p)Tn)2
(9)

The three normal distances along the three surface normals
is a complete and much more accurate distance measure

a b

Figure 9: Ridges and corners are singular patches.

than the Euclidean distance between corner locations, be-
cause the real normals are taken into account.

Furthermore, ideal corner points or ideal ridge segments
do not exist in the real world (Figure 9). There is always a
non zero radius of curvature caused by a blending surface
to avoid concentration of stress which may lead to cracks.
On a typical airfoil for aircraft engines and power turbines,
this radius of curvature could be 10 to 1000 times the re-
quired accuracy of the surface. So using high curvature
features such as corners and ridges would mean 10 to 1000
times less accurate registration. Or it would require full
modeling of the blending surfaces, which are usually not
well defined in the CAD model either.

3.4 Occluding Patches
The blade in Figure 1 is mainly composed of two large

perpendicular surfaces: an airfoil and a platform. The plat-
form is mostly planar. The airfoil is a low-curvature, ruled
surface. This is an instance of shape singularity, in which
the regular surfaces do not provide enough constraints to
solve for all six pose parameters reliably. In particular, the
ratio of maximum over minimum eigenvalue is 229.8. This
ill-condition number decreases to 20.51 when occluding
patches along the blade’s outline are added. An advantage
of the pre-compilation of the CAD model into patches is
the ability to detect shape singularities, and take corrective
actions ahead of actual registration. In general, both reg-
ular and occluding patches along with appropriate weights
should fully constrain the global pose, except for global
shape symmetries and reflections as in cylinders and ellip-
soids.

4 Solving Pose with Normal Distance
Previous registration algorithms have minimized the

sum of squares of approximate normal distances (8):

min
RT ;t0

X
i

[(RT
qi � pi � t

0)Tni]
2 (10)

using a small angle approximation forR [2]. From the esti-
mated inverse(RT ;�t0), the transform(R;Rt0) is applied
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to the model patches to align the CAD model to the range
data.

Ideally, the pose should be estimated by robustly min-
imizing the sum of squares of symmetric normal dis-
tances (5):

min
R1=2;t1=2

X
i

[(RT
1=2p

0
i �R1=2pi � t1=2)

T �ni]
2 (11)

The error for matchi is measured by rotatingp0i andpi
each halfway toward the other, then taking the dot product
of the residual deviation with the average normal�ni. It
is implicit that the two normals are also rotated halfway
toward�ni. After estimatingR1=2 andt1=2, the transform
applied to the model patches would beR = R1=2R1=2 and
t = R1=2t1=2.

Unfortunately, neither (10) nor (11) can be manipu-
lated as in [7, 13] to separate rotation and translation and
allow rotation to be solved exactly in closed form using
quaternions. This section proves how the symmetric error
norm (11) is equivalent to the algebraic error norm (12) if
matching is exact, then approximated to actual norm (13)
used in RCP, by replacing the average normal�ni with the
model normalni.

4.1 Algebraic Error Norm
The ideal minimization (11) can be rewritten using the

linear pose constraint (21), yielding another least squares
error norm,X

i

[((I �W=2)p0i � (I +W=2)pi � tw)
T �ni]

2; (12)

which no longer depends on rotation matricesR1=2. With
this algebraic norm, the parameters! andtw can be solved
exactly with linear equations, from which the desired ro-
tation R and translationt can be calculated as in (2).
And since there are no constraints on the parameters as in
quaternions [7, 13], the linear system in the six pose param-
eters can be solved using a singular value decomposition.

The approximationR1=2 � I + W=2 introduces only
radial errors, perpendicular top0 � p, and so generates no
resulting moment along or against current rotation!, Fig-
ure 10, i.e. has absolutely no effect on the least-squares-
error solution. In other words, large rotations can be solved
in one iteration if correct matches are assumed, and so the
convergence is faster than solving with small angle approx-
imation to linearizeR.

Finally, using model normalni rather than the average
normal�ni, the approximate least squares error norm isX

i

[((I �W=2)qi � (I +W=2)pi � tw)
T
ni]

2: (13)

From (7), this approximation leads to over-estimating the
normal distance by a factor of(1� (d(P; P 0)=r�3)�2=8)

which in turn leads to over-estimating the rotation vector
!. Despite (13) being an approximation to (12), there are
still distinct advantages to using it. In our simulations, it
is a good approximation even for large rotation angles of
90 degrees. For true rotations of less than 45 degrees, the
overshoot in estimating rotation is slightly smaller than that
obtained when solving (10) using a small angle approxima-
tion toR.

4.2 Robust Pose Estimation
The pose estimation procedure is made robust while

still maintaining computational efficiency by using an M-
estimator [10, 14]. Outliers, often in clusters, appear in the
range data due to several causes: specular reflections from
the shiny metallic surface, measurements that are not part
of the blade, and regions of the actual blade surface which
do not appear in the model. These can not be trimmed by
restricting data to a hypothetical work volume. Preprocess-
ing and filtering the range data is computationally ineffi-
cient, ineffective (when outliers are clustered), and unnec-
essary because robustness is easily built into the pose cal-
culation. Finally, the recent use of high breakdown point
estimators such as least median of squares (LMS) [19] in
the pose calculation [17] is too expensive and unnecessary
in our application to obtain a high degree of robustness (see
[15] for related discussion).

To use an M-estimator effectively we must calculate a
scale estimate� in addition to the pose parameters. We
discuss pose estimation first, assuming fixed�. The M-
estimate of pose is

argmin
!;tw

X
i

�(ri(!; tw)=�): (14)

where the residual errorri describes the approximate nor-
mal distance as in (13):

ri(!; tw) = ((I �W=2)qi � (I +W=2)pi � tw)
Tni

(15)

This is solved using iteratively reweighted least-
squares (IRLS) [12], with weighting functionw(r=�) =
�0(r=�)=(r=�). Our current implementation uses the
“Tukey biweight” [1]:

�(r=�) =

(
B2

6

�
1�

�
1�

� r=�
B

�2�3�
jr=�j � B

B2

6 jr=�j > B
(16)

whose tuning constantB is typically around 4.5 to ensure
consistency at Gaussian errors [12]. The resulting weight
function is 0 for residuals larger thanB�.

Turning now to scale estimation, it is crucial to re-
calculate� during each iteration of the registration process.
For, the normal residualsri reflect both pose error and sen-
sor noise, with pose error dominating initially and noise
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dominating at the final pose. Overall, the scale of the er-
rors can decrease by two orders of magnitude. Thus, scale
estimated from the initial pose error will be unable to elim-
inate outliers as registration converges, and setting� ini-
tially based on the known sensor error will eliminate most
matches as outliers. To avoid this problem, scale is esti-
mated twice during each iteration of the registration pro-
cess. After matching and before running IRLS,� is esti-
mated from the current pose and then used in IRLS. After
IRLS, � is re-calculated from the estimated pose and used
to limit the search for matches in the next iteration of regis-
tration, providing additional robustness and efficiency. For
any given set of matches and pose estimate, scale is calcu-
lated using the median absolute deviation [12]:

� = 1:483 median
i

fjri(!; tw)jg; (17)

where the constant multiplier ensures consistency at Gaus-
sian residuals.

5 Appendix
5.1 Linear Solution of Pose

Let p0 = Rp, assuming pure rotation by an angle�
around an axis described by the unit vectoru. Figure 10
shows the following formula of Rodrigues [8, p. 72] [13]:

p0 = (pTu)u+ (p� (pTu)u) cos � + (u ^ p) sin � (18)

Rotatingp0 back top requires just reversing the sign of�.
Using this to form an equation similar to (18), subtracting
the two equations, then using the fact thatp0�p is normal
to u and rearranging slightly yields the direct solution of
rotation:

(p0 � p) = ! ^ (p+ p0)=2
! = 2 tan �

2u
(19)

The axis of rotationu and the angle of rotation� are all
described in the 3-component vector! with no additional
constraints on it. The rotation vector! has a singularity
at � = �, but no singularity at� = 0, unlike a quater-
nion [13]. The singularity at� = � is unavoidable since
all rotations can not be represented using just three param-
eters [21].

Now, when rotation and translation are both involved,
p0 = Rp + t. Substitutingp0 � t in place ofp0 in (19)
yields the direct solution of the full pose:

(p0 � p) = ! ^ (p+ p0)=2 + tw

tw = t� 1
2! ^ t:

(20)

5.2 Relation to Orthonormal Matrices
LetW be the skew symmetric matrix such that!^v =

Wv for all vectorsv in <3. Then (20) can be rewritten as

(I �W=2)p0 = (I +W=2)p+ (I �W=2)t (21)

p0 = (I �W=2)�1(I +W=2)p+ tw

p’

u

p

p-(p.u)u

(p.u)u

^u  p

θ

Figure 10: Illustrating Rodrigues’ formula.

(I�W=2) is always invertible and(I�W=2)�1(I+W=2)
is an orthonomal matrix. So, the relationship between the
rotation vector! and its equivalent orthonormal matrixR
is

R = (I �W=2)�1(I +W=2) (22)

It can be shown thatI�W=2 andI+W=2 are very close to
orthonormal for small angle of rotation�, and soRT

1=2 �

I �W=2 andR1=2 � I +W=2.
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