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1 Introduction

The goal of computer vision algorithms is to extract geometric, photometric
and semantic information from image data. This may include the position and
identity of an object [2, 8, 20, 38, 49, 59] the motion of a camera attached
to a car or an autonomous vehicle [1, 6, 18], the geometry of object surfaces
[10, 14, 71], or the transformations necessary to build a large composite image
(a mosaic) from a series of overlapping images of the same scene [36, 70]. The
processes used to extract this information each require some form of parameter
estimation — to describe intensity edge curves, motion models, surface normals
and curvatures, and Euclidean, affine and projective transformation models [24].

An intensity image typically contains 250,000 pixels or more, with each
pixel storing an 8-bit grey level or three 8-bit components of a color vector.
Range images, where pixels record X,Y, Z scene coordinates as measured by
special purpose sensors, may contain as many measurement vectors. Each pixel
measurement is subject to small scale random variations (noise) caused by the
processes of sensing and digitization. This huge volume of data implies that
parameter estimation techniques in vision are heavily over-constrained, even for
problems where low-level feature extraction such as edge detection is used as a
pre-processing step. This in turn implies that parameter estimation problems in
vision should be solved by least-squares or, more generally, maximum likelihood
estimation (MLE) techniques.

Unfortunately, computer vision data are rarely drawn from a single statisti-
cal population as required for effective use of MLE. Intensity and range images
may contain light and depth measurements from multiple scene surfaces. A
moving camera, which induces apparent image motion, may also image an in-
dependently moving object, inducing a second apparent motion. In both cases,



multiple structures (populations) are represented in the image data. Addition-
ally, some image data may be measurements that are difficult to assign to any
population. These data are gross errors (“outliers”) which may be caused by
specular highlights, saturation of sensors, or mistakes in feature extraction tech-
niques such as edge and corner detectors. It is important to note that these gross
errors may be arbitrarily large and therefore can not be “averaged out”, as is
typically done with small-scale noise. As illustrated in Figure 1, when image
data are drawn from multiple populations or outliers, application of MLE can
produce nonsense results. Much work in computer vision, therefore, has been
directed at separating (segmenting) data into distinct populations prior to or
during parameter estimation. Complete segmentation, however, is not possible
without parameter estimation, because the process of assigning data points to
populations depends, at least partially, on the parameters describing the struc-
ture of each population. A simple illustration of this is that it is impossible to
know which points belong to a line until the line parameters are known.
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Figure 1: Simple examples demonstrating the effects of (a) multiple image struc-
tures (data populations) plus outliers and (b) a single outlier (a “leverage point”)
on linear least-squares fits. If the example in (a) is thought of as the plot of
the cross-section of a range image (Section 3), then the z coordinate represents
image position, the y coordinate represents the depth measurement, and the
two populations correspond to measurements from two different surfaces, one
closer to the sensor and perhaps occluding the other.

This difficulty has sparked growing interest by the computer vision com-
munity in the use of robust estimation techniques, which have been developed
over the past 25 years in both the computer vision and the statistics literatures
[25, 27, 34, 35, 52, 62]. These techniques are attractive because they are specifi-
cally designed to accommodate data from multiple populations when estimating
the parameters describing the dominant population. Ideally, the parameters es-
timated should not differ substantially from those estimated via MLE for the
dominant population in isolation.



This paper provides a tutorial introduction to robust parameter estimation
in computer vision. The paper starts with a summary of commonly used ro-
bust estimation techniques, and then describes how they have been applied and
extended. Three applications are considered in detail. The first is estimating
the parameters describing low-order surface geometry from range data [7]. The
second is fundamental matrix estimation — the problem of using corresponding
points to establish the relationship between two different images of a scene taken
with uncalibrated cameras [50, 80]. The third problem is building a “mosaic”
image of a human retina by matching and combining overlapping retinal images
into a single, larger image [5]. The last two problems are closely related.

In thinking about the techniques presented, it is important for the reader to
note that robust estimators are not necessarily the only or even the best tech-
nique that can be used to solve the problems caused by outliers and multiple
populations (structures) in all contexts. Specialized heuristics for handling oc-
casional outliers appear throughout the computer vision literature, and in some
cases, most notably when estimating surfaces from raw range or intensity im-
ages, multiple populations may be treated as an edge detection or segmentation
problem (see textbook discussions in [28] for example). On the other hand, since
robust estimation techniques have been designed to handle outliers and multi-
ple populations and since these problems are pervasive, knowledge of robust
estimation and its limitations is important in addressing parameter estimation
problems in computer vision.

2 Robust Estimation

The first step in describing robust estimators is to state more clearly what is
meant by robustness. Several measures of robustness are used in the literature.
Most common is the breakdown point [62] — the minimum fraction of outlying
data that can cause an estimate to diverge arbitrarily far from the true estimate.
For example, the breakdown point of least-squares is 0 because one bad point
can be used to move the least-squares fit arbitrarily far from the true fit. The
theoretical maximum breakdown point is 0.5 because when more than half the
data are outliers they can be arranged so that a fit through them will minimize
the estimator objective function.

A second measure of robustness is the influence function [27, 34] which, in-
tuitively, is the change in an estimate caused by insertion of outlying data as
a function of the distance of the data from the (uncorrupted) estimate. For
example, the influence function of the least squares estimator is simply propor-
tional to the distance of the point from the estimate. To achieve robustness,
the influence function should tend to 0 with increasing distance.

Finally, though not a measure of robustness, the efficiency of a robust esti-
mator is also significant.! This is the ratio of the minimum possible variance in

IThere is a potential confusion between the statistical notion of efficiency and the compu-
tational notation of efficiency, which is associated with the algorithm implementing a robust
estimator. Where the meaning is not clear from the context, the phrases “statistical efficiency”



an estimate to the actual variance of a (robust) estimate [47], with the minimum
possible variance being determined by a target distribution such as the normal
(Gaussian) distribution. Efficiency clearly has an upper bound of 1.0. Asymp-
totic efficiency is the limit in efficiency as the number of data points tends to
infinity. Robust estimators having a high breakdown point tend to have low
efficiency, so that the estimates are highly variable and many data points are
required to obtain precise estimates.

Robust estimators are usually defined and analyzed in terms of either linear
regression or estimation of univariate or multivariate location and scatter [27,
34, 62]. (Most computer vision problems requiring robust estimation are similar
to regression problems.) To set a general context, let X = {x;} be a set of
data points (vectors) and let a be a k dimensional parameter vector to be
estimated. The objective functions used in robust estimation, like those used
in MLE, are defined in terms of an error distance or residual function, denoted
by ria = r(x;;a). Ideally this should be a true geometric distance — e.g. the
Euclidean distance between a point x; and the curve determined by a — or
better yet, a Mahalanobis distance if the covariance matrix of x; is known.

2.1 M-Estimators

While many variations on robust estimation have been proposed in the statistics
literature, the two main techniques used in computer vision are M-estimators
and least-median of squares. M-estimators are generalizations of maximum
likelihood estimators and least-squares [27, 34]. In particular, the M-estimate
of a is

a= arg;nin Z p(Ti.a/0%) (1)

where p(u) is a robust loss function which grows subquadratically and is mono-
tonically non-decreasing with increasing |u|. Also, o? is the variance (scale)
associated with the scalar value r; . Constraints on a are easily incorporated.
The minimization in (1) is solved by finding a such that
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where ¢(u) = p'(u). A common, though certainly not the only, next step [29, 32]
[34, pages 179-192] is to introduce a weight function w where w(u) - u = ¥(u)
and solve

1 dr;a
> w(Ti,a/Ui)gd—;Ti,a =0. (2)
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This leads to a process known as “iteratively reweighted least-squares” (IRLS)
which alternates steps of calculating weights w; = w(r; a/0;) using the current

and “computation efficiency” will be used.



estimate of a and solving (2) to estimate a new a with the weights fixed. Initial
estimates of a may be obtained in a variety of manners, including non-robust
least-squares or other robust estimators discussed below.

The many M-estimators that have been proposed differ in the shape of the
functions p(-) and, as a result, ¢(-) and w(-). Three common functions are
listed in Table 1, with weight functions plotted in Figure 2. The 9 functions,
essentially, are proportional to the influence function. Hence, 1 functions tend-
ing to 0 most quickly (“hard redescenders” in the terminology of [32]), such
as the Beaton and Tukey function, allow the most aggressive rejection of out-
liers. This has been found to be important in computer vision problems [68]
when outliers have small residual magnitudes such as in the range 40 to 10c.
Unfortunately, when redescending ¢ functions are used the objective function,
> x;ex P(Ti,a/03), is non-convex, implying that IRLS will converge at local min-
ima.
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Table 1: Three different robust loss functions, p(u), and associated 1 functions.
The “tuning parameters” a, b and ¢ are often tuned to obtain 95% efficiency
[32].

The scale values, o;, are used to normalize the error distances and to further
weight the contribution of each point when scale varies with ¢. Scale values
may be provided a priori from analysis of the sensor or process (such as edge
detection) from which the data are obtained. In some cases, scale will not be
known in advance and must be estimated from the data. In this case, o; is
replaced by & in the above equations. Equation 1 may be rewritten to jointly
estimate a and o [34, Chapter 7]. Alternatively, o may be estimated from
an initial fit prior to IRLS and re-estimated after each of the first few TRLS
iterations. Robust scale estimation techniques such as the median absolute
deviation [32] (Equation 4) are used. Scale must be fixed, however, before
allowing IRLS to converge. The particularly difficult case of o; being both
unknown and varying with ¢ (heteroscedastic) will not be treated here.

An example of line parameter estimation using an IRLS implementation and
the Beaton and Tukey [4] weight function is shown in Figure 2.1(a). Scale was
re-estimated after each of the first three iterations and IRLS took ten itera-
tions to converge. Convergence is typically faster with fewer iterations of scale
estimation, but the result on this example is less accurate.

The breakdown point of standard M-estimators in regression is 0 because of
the possibility of leverage points (Figure 1b) — outliers positioned far from the
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Figure 2: Plots of the weight functions for the robust loss functions given in
Table 1. The horizontal axis units are scale-normalized residuals 7;/0;.

remainder of the data in the independent variables as well as being far from the
fit to the uncorrupted data. A local minimum of (1) will generally occur for
a fit rotated to pass through (or near) the leverage point(s), as in Figure 1b.
A generalization of M-estimates, GM-estimators (see discussion in [61]), which
downgrades the influence of points based on both independent and dependent
variables, can have breakdown points as high as 1/(k+ 1), where k is the length
of a.

2.2 Least-Median of Squares

Least-median of squares (LMS) is distinguished by having a breakdown point
of 0.5, the highest value possible. In the notation here, the LMS estimate [60]
is

~ . . 2
a = argmin n;e;(élje(m Tia: (3)
The intuition behind LMS is that up to half the data points can be arbitrarily
far from the optimum estimate without changing the objective function value.

Since the median function is not differentiable, alternative search techniques
are required. In the special case of fitting regression lines to points in R2,
computationally efficient algorithms are known for solving (3) exactly [23, 66].
In more general settings, a random sampling technique, developed independently
in the computer vision [25] and statistics [60] literatures, is required. The idea
is to randomly select a number of k-point subsets of the N data points. A
parameter vector, ay, is fit to the points in each subset, s [58]. Each a, is tested
as a hypothesized fit by calculating the squared residual distance r?’ﬂs of each
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Figure 3: Example robust line estimates: (a) shows initial, intermediate and
final estimated lines for an M-estimator using IRLS; (b) shows a number of lines
hypothesized and tested during a random sampling implementation of LMS.



of the N — k points in X — s and finding the median. The a, corresponding to
the smallest median over S subsets is chosen as the estimate, a. Overall, this
computation requires O(S N) time using linear-time median finding techniques
[21].

A crucial parameter in this algorithm is S, the number of subsets. S must
be large enough to have a high probability of including at least one subset
containing all “good” data points — points that are measurements from the
structure of interest. If p is the minimum fraction of good points, then to a
first approximation, the probability of a subset containing all good points is p*.
From this, it is easy to see that the probability that at least one of the S subsets
contains all good points is

P, =1—(1-pk>5.

By choosing a desired value of P, the minimum value of S can be found. As an
example with Py, = 0.99,if k =3 and p = 0.5 then S = 35;if k =6 and p = 0.6
then § = 97; and if K = 6 and p = 0.5 then S = 293. Clearly, the required
number of subsets increases dramatically with increasing k and decreasing p. An
example of line parameter estimation using a random sampling implementation
of LMS is shown in Figure 2.1(b). Several hypothesized and tested lines are
shown, including the final estimate.

The “Median Absolute Deviation” scale estimate may be obtained from the
estimate a and used to gather data points to refine the fit. The scale estimate

is
1/@71(0.75) (1 + 5 ),/ median r? 4)
N—k x; €EX —s* ha’

where s* is the subset used to form a4, ® ' is the inverse of the cumulative normal
distribution, and 1+5/(N —k) is a finite sample correction factor [62]. The result
is an unbiased estimate of &, which means that if all N points are sampled from
a normal distribution with variance o2, then 6 — ¢ as N — co. The estimated
scale may be used to refine a: the data points such that rié < (656)?2, for constant
0 typically around 2.5, can be identified and used to calculate a least-squares
estimate of a. This is important because LMS has low statistical efficiency.

LMS may be generalized in a number of ways based on the order statistics
of the residual distances [61]. Some of these are discussed later.

o

2.3 Requirements for Robust Estimation

The nature of computer vision problems alters the performance requirements of
robust estimators in a number of ways.

e The optimum breakdown point of 0.5 must be surpassed in some domains.
While this is not possible in general, due to the definition of breakdown,
it is in particular instances due to problem specific considerations. For
example, fewer than half the points are from any one line in Figure 1(a),



but each line is clearly visible. A robust estimator should not fail to
estimate a line that approximates one of these two.

e Having enough inliers to satisfy the breakdown limit will not guarantee
satisfactory results since it only guarantees that the outliers do not cause
the estimate to stray arbitrarily far. For example, the estimated line shown
in Figure 1(a), which is approximately the LMS estimate when just more
than 50% of the points are from the lower line [68], does not represent a
breakdown of the estimator, but it is clearly wrong.

e The low breakdown point of M-estimators can be misleading. A local
optimum fit passing near leverage points (Figure 1(b)) can be avoided by
proper (robust) initialization of IRLS iterations. (This issue is explored
in [46].) Use of an M-estimator having an influence function that tends
to 0 quickly, so that the weight of the leverage points is 0, will then cause
outliers to be ignored.

e The emphasis is often, though not always, on tolerating large numbers of
outliers rather than on statistical efficiency. One effect of this is on the
choice of tuning parameters for M-estimators — they are often set much
lower [9, 68] than suggested by efficiency experiments [32]. This tends to
“narrow” the weight functions shown in Figure 2, reducing the influence
of points on the tail of the inlier (noise) distribution — hence the loss of
efficiency — but making the estimator less sensitive to outliers near the
tail of the distribution.

e In some cases, computational efficiency can be of utmost concern. This
could render impractical random sampling algorithms generating large
numbers of samples.

2.4 Robust Estimation Techniques Developed In Com-
puter Vision

Several robust estimation techniques have been developed in computer vision,
either independent of the statistics literature or as an extension of techniques
appearing there.2 The two most important robust techniques developed in-
dependently in computer vision are Hough transforms [35, 42] and RANSAC
[25, 58]. A Hough transform is a voting technique. The domain (the “parame-
ter space”) of the parameter vector a to be estimated is discretized, one voting
bin is allocated per discrete parameter vector, and each data point x; “votes”
for parameter vectors a — i.e. the associated voting bin is incremented — for
which the fit residual ry;;a is small enough. The parameter space is searched
after voting is complete to locate maxima or to locate and analyze clusters of
large numbers of votes. In the former case, the objective function underlying
the Hough transform is quite similar to that of an M-estimator and shares some

2In addition, many published algorithms include heuristics for eliminating outliers; these
are too numerous and too application specific to be reviewed here.



of its limitations [68]. An advantage of Hough Transforms in general is that
a thorough sampling of the parameter space is obtained. A disadvantage is
that the size of the voting space is exponential in the number of parameters,
rendering it impractical for many applications.

RANSAC [25, 58] has similarities to both M-estimators and LMS. Like LMS,
it is a minimal subset random sampling search technique, predating LMS by
three years. The objective function to be maximized, however, is the number of
data points (inliers) having absolute residuals smaller than a predefined value,
0. Equivalently, this may be viewed as minimizing the number of outliers, which
may then be viewed as a binary robust loss function that is 0 for small (abso-
lute) residuals, 1 for large absolute residuals, and has a discontinuous transition
at 6. Interestingly, both RANSAC and Hough transforms, by virtue of the
prespecified inlier band, can be used to find structures formed by substantially
fewer than half the data. A cost of this is that small, random structures can
also be found [68], implying that careful post-processing analysis of structures
estimated using RANSAC or Hough transforms is required.

Several extensions to LMS have been introduced in the computer vision
literature [43, 53, 54]. The simplest is to just alter the fraction of inliers used,
moving up or down from the 0.5 of the median. In general, reducing the fraction
will reduce the breakdown point since a smaller fraction of outliers is required
to corrupt the estimate, but this is advisable when there are multiple structures
in the data, when there are relatively few true outliers, and when the minimum
fraction of data corresponding to a single structure is known.

A more general approach, which doesn’t rely on a fixed inlier fraction, is
based on realizing that the scale estimate in Equation (4) can be generalized to
any inlier fraction p by replacing ®~1(0.75) with ®~1(0.5 + p/2). This gives an
unbiased scale estimate for the residuals to the correct fit when these residuals
follow a normal distribution. Suppose, however, that the data consist of &
points measured from a normal distribution and N — k outliers. Here, at the
correct fit, the scale estimate will be an overestimate, but will be approximately
constant for p < k/N, and will increase substantially for p > k/N. Also, the
scale estimates will increase, especially for p < k/N, as the fit is moved away
from the correct one. These observations have been built into two estimators,
ALKS [43] and MUSE [53, 54], which are based on finding the estimate and
associated fraction p that minimize a measure tied to this scale estimate.

The final extension of LMS, an estimator referred to as MINPRAN, is based
on an assumed outlier distribution, which may be known or hypothesized when
properties of the sensing process are known [67]. The estimated parameter
vector is the one whose chosen inlier set is least likely to be a set of outliers over
all possible inlier sets. This inlier set is determined from an inlier bound, 8, as
in RANSAC, but @ is varied over all possible values to minimize the probability
of randomness. Somewhat surprisingly, the computational cost of this is only
O(SNlog N + N?).
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3 Surface Estimation from Range Data

The first application of robust estimation in computer vision to be considered
here is the problem of estimating the parameters of surfaces from range data.
This problem is closely related to regression since errors in range measurements
tend to be concentrated along the optical axis of the cameras. This allows the
depth measurement to be treated as the only independent variable.

3.1 Range Data and the Estimation Problem

Range data are sets of measurement vectors (X,Y, Z)? from surfaces in the field
of view of a range sensor [10, 57]. Each data set may contain tens or hundreds
of thousands of points. There are several different types of range sensors. Many
use triangulation, either from two or more cameras at known positions, or by
replacing one camera with a light source that shines known planes of light into a
scene, measuring (X, Y, Z)T from reflected positions in the remaining camera(s).
Other techniques determine depth by measuring time of flight or phase shifts
in radiation reflected from surfaces. In general, the (X,Y, Z)T measurements
are usually recorded at the grid locations of an image, creating what’s called a
range image (Figure 4a). This range image may be either sparsely or densely
populated with points. Accuracy and error of the measured points are around
1/250 to 1/1000 of the depth interval over which measurements are taken, which
can vary from the order of centimeters to the order of meters. Some of the
measurements may be gross errors (outliers) caused by specular highlights, by
thresholding effects, or by inter-reflection of light from multiple surfaces. For
more background on range sensors see [39, 57], while for background on the
analysis and use of range data in computer vision see [2].

The first goal of range data analysis is to describe the surfaces from which the
measurements were taken [14]. The descriptions may be polynomial models such
as planar or quadratic models [10, 33, 44, 71], implicit functions such as quadrics
and super-quadrics [45], or even functions of unknown form, in which case the
surfaces are ultimately defined discretely, at each grid location [13, 26], or using
a finite-element model [72]. Two complications make the problem particularly
difficult. First, each surface will be of limited spatial extent, implying that
unknown surface boundaries may need to be located. Second, there will be
multiple surfaces, some abutting or even overlapping in image locations and
perhaps close in depth measurements. These difficulties suggest what might
be termed a “local-to-global” approach where first low-order polynomials are
estimated in small and potentially overlapping image regions and then gathered
into more global, complete surface descriptions. Many range image analysis
techniques take this approach [9, 15, 22, 33, 44, 65].

3.2 Local Estimation of Surfaces

The goal of local estimation is to describe the surfaces represented in small image
regions using planar or quadratic polynomials, identify and eliminate outliers,
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Figure 4: A complicated range image data set. Image (a) shows the original
range image using color to encode depth (red being closer to the viewer). The
scene includes a tennis ball can, a coffee mug and a planting pot in the fore-
ground, a wire mesh table (on its side) behind these, and two different planar
surfaces in the background. Image (b) shows a small window to which local
surface estimation might be applied — points are from three different surfaces.

and perhaps generate an initial estimate of surface boundaries. This is easy in
regions when only one surface is present, but more difficult when there are two
or more surfaces (Figure 4b). In the latter case, it is possible for fewer than
50% of the points to correspond to one surface. Ideally, all surfaces should be
described.

The first work in using robust techniques for local estimation was done by
Besl et al. [9] using M-estimators to robustly compute planar surface patches,
and by Meer et al. [51, 52] using LMS in much the same way. Subsequently,
Mirza and Boyer [55] explored a variety of M-estimators for local estimation,
concluding that use of those with ¢ (and weight) functions redescending to an
asymptotic limit of 0 at infinity yielded the best performance on data corrupted
with random Gaussian outliers. Sinha and Schunck [65] used LMS locally to
eliminate outliers and estimate local variations in surface orientation. Stewart
[67] introduced the MINPRAN method discussed earlier to estimate multiple,
potentially-overlapping surface patches, and not requiring any patch to con-
tribute more than 50% of the points. Better performance at small magnitude
discontinuities was obtained by Miller and Stewart [53, 54] using MUSE and by
Lee et al. [43] using ALKS (Section 2.4). The former incorporates techniques
from MINPRAN to determine when the MUSE estimate is distinctive enough
to be considered non-random; this allows effective determination of the correct
number of surface estimates to describe the data set taken from small image
regions. An example result using MUSE [53, 54] is shown in Figure 5.
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Figure 5: Results (a slightly sideways view) of local surface estimation on the
range image data shown in Figure 4. Planar surface patches with bounding rect-
angles on their inlier sets are shown in (a) and estimated inliers are shown in (b).
Outliers have clearly been eliminated and most surfaces accurately estimated.
(Use of the rectangular bounding boxes in (a) introduces some artifacts.) Some
surfaces from the wire mesh, unfortunately, were missed because they did not
occupy a large enough fraction of the inliers to form an acceptable MUSE fit.

ALKS and MUSE produce accurate surface patches, including multiple sur-
face patches, except when the depth change (discontinuity magnitude) between
abutting surfaces is less than about 4.50 [53], where o is the standard deviation
of the noise in the data. Most standard robust estimation techniques, including
LMS and M-estimators, fail when the discontinuity magnitude is 7.50 or higher
[68]. (Figure la is generated from a model of a discontinuity where these esti-
mators would fail.) The failure in all cases is an estimated surface patch that
“bridges” the two real surfaces (see Figure 1la). This bridging surface is the
global minimum of the objective function and is therefore not an artifact of the
random sampling or IRLS search techniques [68]. In summary, the best robust
estimators yield accurate local fits except at extremely small magnitude depth
discontinuities, which may be caused by small-scale surface structures.

3.3 Global Estimation of Surfaces

In global estimation of surfaces, which should yield complete descriptions of
surfaces and their extents, robust estimation plays a reduced role. It must at
least be used in combination with other techniques and is often not used at all
in current systems. There are several illuminating reasons for this. First, the
appropriate model for the surface is usually unknown, implying that models
must be selected automatically [17, 74]. For example, the technique of Boyer
et al. [15] grows planar and quadratic surfaces from seed regions — regions of
minimum variance in the data — estimated using an M-estimator. Growth is
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controlled using the same M-estimator, and the model is selected by a modified
form of [16]. A related growth technique, which uses prediction intervals to
detect finer magnitude discontinuities, is described in [53]. See [33] for a review
and empirical comparison of other techniques that address this “segmentation”
problem.

A second reason for the reduced role of robust estimation is that even if the
surface model is known the extent of the surface must be determined. Without
it, robust estimation alone has little chance of success, because a single surface
will generally correspond to an extremely small percentage of the data in the
entire range image and therefore the potential for “bridging fits”, as discussed
above, is even more substantial than in local estimation. This is the reason for
growing from seed regions, as in [10, 15, 71].

A third reason is the surface may be too complicated to be described in a
closed-form and can only be described at discrete locations or using a spline
or finite-element model [14]. Here, while robust estimation can help eliminate
outliers [65], the more common use is to convert least-squares error norms on
the data and on the smoothness of the reconstructed surface into robust error
norms based on M-estimator loss functions [12].

3.4 Final Comments on Surface Estimation

Two final comments about the nature of range data and surface estimation are
important in order to raise issues that have been incompletely addressed in the
literature but are important for practical applications. These affect the use of
robust estimation and other techniques. First, most sensors produce quantized
data, often with precisions as low as 8 bits. At the extreme, any “noise” in the
data is buried in the quantization. This differs significantly from the assump-
tions under which estimators, robust or not, are typically analyzed. Analytical
results should therefore be used with caution when predicting estimator perfor-
mance on this quantized range data. Second, the variance in (non-quantized)
range data may vary spatially and with depth, even across a single surface
[53, 54]. If this “heteroscedasticity” were known in advance, it could be built
into the M-estimator objective function (as written in Equation 1 above), but
prior knowledge is difficult to obtain. The effect of such heteroscedasticity on
high-breakdown point estimators such as LMS has not been studied in computer
vision.

4 Estimation of the Fundamental Matrix

Consider two different images of the same scene, taken from two different view-
points. A great deal of information may be gleaned from these images about the
relative positions of the camera(s) when the images were taken, about the struc-
ture of the scene, and, if the images were taken at different times, about changes
in position of any scene objects. This information is encoded in differences be-
tween image positions of scene points. By extracting distinctive features, such
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as intensity corners, in each image, and then matching them across the two
images, a set of correspondences can be established. Each correspondence is a
pair of image positions, one from each image, and the points in each pair are
hypothesized to correspond to the same scene point. These correspondences are
used to estimate image-to-image transformations, camera motion, and scene
structure. What is actually estimated depends on what’s known in advance
about the camera, the motion and the scene.

This section and the next consider two such problems of estimating image-to-
image transformations based on image-to-image correspondences. In each case
the correspondence set is generally contaminated by numerous outliers. Robust
techniques are used to estimate the transformation parameters and identify the
outlier (incorrect) correspondences. The estimated transformation may then be
used to return to the initial feature set and identify new correspondences which
are much more likely to be correct. This aspect of the problem differs from most
applications of robust estimation where the input to the estimation process is
fixed.

4.1 Introduction to the Fundamental Matrix

When two images are taken by a single uncalibrated camera or by two different,
uncalibrated cameras, the relationship between the images can be captured in
the “fundamental matrix” [50, 80]. This matrix imposes a linear constraint on
the image positions of corresponding features. Once the fundamental matrix
is known, the scene geometry can be reconstructed up to a projective trans-
formation, with additional constraints (e.g. the corner of a room where three
orthogonal faces meet) leading to affine or Euclidean reconstructions [24].

Let {X;} be a set of feature point locations in image 1 and let {X}} be a set
of corresponding feature locations in image 2, with each location vector written
in homogeneous coordinates. The features are intensity corners [81] or other
distinctive locations detected by an interest operator [63]. Correspondence for
each X; is found by searching an area of image 2 established by the range of
scene depths and camera motions determined a priori. Within this area, which
is sometimes as small as 30 pixels on a side [76], but could be much larger
depending on what restrictions are placed on camera motion, X} is the location
of the image feature most similar to that of X;, as decided by, for example,
correlation of the surrounding image regions.

The fundamental matrix, F, is a 3 x 3, rank 2 matrix such that for each 4,

%] Fx} = 0. (5)

Because it is homogeneous and rank deficient, F has 7 degrees of freedom and
therefore can be estimated from at least 7 correspondence pairs. For any point,
P - . . .

%', in image 2, FX' defines a line in image 1 through which the point correspond-
ing to X' must pass. Similarly, for any point, %, in image 1, FT% defines a line
in image 2 through which the point corresponding to X must pass. All such
lines, known as “epipolar lines”, pass through the “epipoles”, which are the null
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Figure 6: A pair of images and some of the epipolar lines resulting from the
robust fundamental matrix technique of [81]. Points numbered are correspon-
dences. Non-robust estimation results in substantial skewing of these lines and
the position of the epipole. These images were provided by Zhengyou Zhang,.

spaces of F1 and F, respectively. Figure 6 shows a pair of images and epipolar
lines. The epipole is the focus of expansion if the inter-camera motion is purely
translational motion.

4.2 Estimating the Fundamental Matrix

Estimating the parameters of F is first considered when there are no outliers
and then again in the presence of outliers. The first step is to rewrite (5) X; Fx!
as
7! f
where 1fiz = (mi; Yi, 1)T and i; = (ﬂi’;, y;a l)Ta then z';_I' = (xlx;; mzy;a Ti, y,m;, yzyéa Yi, "E;) y;a 1)
and f contains the appropriately ordered parameters of F. This gives what’s
typically called a fitting error [28, Chapter 11] or an algebraic distance [31].
Summing the squares of these algebraic distances over all ¢ gives

Z(z?ff = fT(Z z;z; )f = 7 zf.

i

With appropriate centering and normalization of the data [30], f, and therefore
F, may be estimated directly from this as the unit eigenvector corresponding to
the minimum eigenvalue of Z. Enforcing det(F) = 0 is achieved by computing
the singular value decomposition of F, setting the smallest singular value to 0,
and recalculating F.
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Some methods minimize an objective function closer to a geometric distance
[76]. Letting r; = z! f be the algebraic residual and 7; ;, 7iy, Tiz and 7,
be its partial derivatives, then an approximation of the geometric distance of
(@:,yi, x}, y:) to the manifold defined by f is

T

2 2 2 2 1/2°
(i, +ri, +ri, +ri,)Y

This geometric distance value is incorporated into estimation of f by scaling the
algebraic residuals by the weights

1
(rf g + 1y + 17, +ri )2

w; =

This leads to the objective function

Z (wizsz)2 )

%

which is minimized iteratively in exactly the same manner as IRLS (Section 2.1).

4.3 Robust Estimation

Robust estimation of the fundamental matrix is important because the matching
process is unreliable and the presence of an independently moving object in the
field of view will induce a distinct fundamental matrix for the image projections
of object points. Outlier percentages of 25-50% or more are not unrealistic.
Application of robust estimation techniques appears straightforward, at first,
but several issues arise. Some of these have been addressed in two prominent
papers on the topic [76, 81]. These issues are discussed first for M-estimators
and then for LMS.

M-estimators require a robust starting point and a weight function that
tends to 0 quickly. Even with an unrealistically small percentage of outliers
(e.g. 10-15%), the initial estimate obtained from least-squares does not allow
M-estimation to converge to the correct estimate [76]. Because of the relatively
small image search area for correspondences and because of the noise in es-
timated match positions, outlier correspondences tend to be close to correct
epipolar lines. This implies that the domain of convergence for the correct esti-
mate will be relatively small, in turn making it unlikely that the least squares
fit used to initialize IRLS will be within this domain. The proximity of outlier
correspondences to epipolar lines shows why the robust weight function must
tend to 0 quickly. These observations are all practical realizations of the theo-
retical properties of M-estimators — a 0 breakdown point but also the ability
to withstand outliers when robustly initialized and used with an appropriate
weight function.

The difficulties associated with LMS are slightly different. The first problem
is that the correct fundamental matrix is often nearly degenerate. (One example
of such a degeneracy is points from a planar surface.) This has two implications.
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First, this degeneracy should be avoided in the random samples themselves.
Zhang et al. [81, 80] divide the image into non-overlapping regions (buckets)
and prevent a random sample from incorporating more than one match from
any one bucket; spreading the random samples across the image reduces the
likelihood of a degenerate sample. Torr and Murray [76] develop a rank test for
degeneracy and consider degenerate samples no further. Second, LMS, with its
low statistical efficiency, will often yield an unreliable estimate of F, even from
a correct set of correspondences. Therefore, refinement of the LMS estimate is
crucial. Zhang et al. [81] apply a least-squares estimate to the matches falling
within 2.56 of the epipolar lines in each image, & being taken from the median
of the summed squared epipolar distances. Torr and Murray [76] take the LMS
estimate as the starting point for an M-estimator using a MAD scale estimate
(Equation 4) refined using an expectation maximization (EM) algorithm.

The second problem in using LMS concerns the random sampling procedure
itself. Zhang et al. [81] generate 8 correspondence samples from which F can
be instantiated with the appropriate constraints. Torr and Murray [76] present
a method that instantiates F from 7 correspondence samples. Either way, the
number of samples required is quite high, with 382 or 588 required for 7 point
samples to obtain a 0.95 or 0.99 probability of obtaining a good sample and
766 or 1177 required for 8 point samples. This expense could be prohibitive for
some applications.

The final issue in using LMS is that the number of outlier correspondences
could in fact be greater than 50%. There are two interacting causes of the large
number of outliers: (1) intensity corners are relatively weak features and easily
mismatched; (2) large inter-image motions can lead to large matching search
ranges and therefore more mismatches. (The results shown here are based on
relatively small motions.) Torr and Murray [76] suggest use of RANSAC, which
has the concurrent limitation of requiring establishment of a prior inlier bound,
when more than 50% of the matches may be outliers. The recent techniques
[43, 53, 54] that surpass the 50% breakdown limit in a probabilistic sense without
prior knowledge of an inlier bound have not yet been used in fundamental matrix
estimation. More generally, the effect of large motions and large numbers of
features requires further exploration.

Example results of robust fundamental matrix estimation are shown in Fig-
ures 6 and 7. Figure 6, from [81], shows a pair of images and the robustly
estimated epipolar lines. Figure 7, from [76], shows the motion vectors for
matched corner features, and then separates them into those consistent (in-
liers) and inconsistent (outliers) with the fundamental matrix estimated from
them. Notice that most matches from the independently moving person are
eliminated as outliers and do not affect the fundamental matrix estimation. In
general, however, unlike the local surface estimation problem, the conditions un-
der which independent motions, producing distinct fundamental matrices, can
be effectively handled is not yet fully understood [75, 77].
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Figure 7: Fundamental matrix and motion estimation from an image sequence
of a camera panning to follow a moving person: (a) shows one of these images,
(b) shows the motion vectors obtained from correspondences superimposed on
this image, (c) shows correspondences consistent with the estimated epipolar
geometry (represented by the fundamental matrix), and (d) shows correspon-
dences inconsistent with the estimated epipolar geometry. These images were
provided by Phil Torr.
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5 Construction of Retinal Image Mosaics

A new application of robust estimation is in the construction of image mosaics
from overlapping images of the human retina. Starting from a series of images,
the goal is to produce a composite that is much larger than any individual image
and shows the retina as a whole. Example images and a resulting mosaic are
shown in Figure 8. This has numerous possible applications in opthalmology.

The primary issue is calculating the transformation, 7', mapping the coordi-
nate system and therefore the pixels of a given image I,,, to a reference image I,
which will form the “center” of the mosaic. Most mosaic construction techniques
in computer vision formulate T as an affine transformation in two dimensions
[6] or as the model of the apparent (image) motion of a planar surface [1]. These
yield 6-parameter and 8-parameter transformation models, respectively. Unfor-
tunately, these models yield substantial mapping errors for the curved surface
of the retina. As a result, a 12-parameter transformation model is required,
which models the motion of a quadratic surface imaged using weak perspective
(scaled orthographic) projection. The derivation of this model is similar to the
derivation of the 8-parameter planar surface motion model [1] and is omitted
here. To see how the transformation works, let Xm = (Zm,¥m)? be the coordi-
nates of a point in I,,, and define X (xm) = (22,,92,, Tm¥Ym>Tm,Ym,1). Then,
the transformed point location in I,. is

xr = TX(Xm)

where T is a 2 x 6 matrix. For optimal estimates of T, this yields transformation
errors averaging about one pixel.

Similar to fundamental matrix estimation, T is estimated by establishing
correspondence between image features located in I, and I.. Features are
bifurcations in blood vessels, found through a tracing procedure [19]. Example
images are shown in Figure 8 and extracted features are shown in Figure 9a.
Establishing correspondence between features, unfortunately, is substantially
more difficult than in fundamental matrix estimation, because the search range
is not known in advance and the degree of overlap between I, and I, may vary
substantially. The result is that initially nearly every possible feature pair must
be considered as a correspondence and this correspondence set must be culled
during estimation of 7T'.

5.1 Hierarchical Transform Estimation

The combination of the 12-parameter transformation model and the vast ma-
jority of matches being incorrect is too difficult to handle directly. Instead,
low-order approximations to T' are estimated to reduce the correspondence set
and focus the final robust estimation of 7'. This hierarchy of transformation
models differs from standard hierarchical (multiresolution) techniques in mo-
tion estimation which start from low-resolution versions of images and gradually
increase this resolution [6].
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Figure 8: Two retinal images and a mosaic of many images estimated using the
robust mapping technique described here.
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The first approximation to T is a simple translation:
Xm = Xr + t.

Each possible match produces a hypothesized image translation vector, t =
Xm — Xr, and these vectors are recorded in a two-dimensional histogram with
overlapping bins. The radius of each bin equals the experimentally determined
maximum position error that could occur using the translation model. For each
hypothesized t, all bins overlapping t are found. A weight determined by an
image similarity measure (e.g. cross-correlation) between matching features is
added to each overlapping bin. At the end, the translation vector corresponding
to the peak bin is taken as the translation estimate and all matches falling
into this bin are retained for estimating the next finer approximation to the
transformation. For some features several matches could be retained, while for
others, particularly those outside the overlap between images, there may be no
matches. Figure 9b shows two images aligned using the translation model.
T is next approximated using a 6-parameter affine model [6, 37]:

Xm = Ax; + t,

where A is a 2 X 2 matrix with no imposed constraints. Here, LMS is used
to robustly estimate the parameters of A and t. Features outside the region
of image overlap determined by the translation model (plus modeling error)
are not considered during LMS. In selecting the matches to form a random
sample, image features are first selected randomly and then a correspondence
for each selected feature is chosen at random from its correspondences that were
retained following translation estimation. Other than this, application of LMS
is straightforward. Figure 9c shows two images aligned using an estimated affine
model.

The final stage is estimation of the full 12-parameter model using an IRLS
implementation of an M-estimator. The scale and residuals used in the first
iteration of IRLS are taken from the optimal LMS affine transformation. In
effect, the affine model estimated by LMS is used to initialize the M-estimate
of the full model. This represents a novel twist on robust initialization of an
M-estimator, since it is done with the robust estimate of a lower order model.
The scale value taken from the affine model is re-estimated following the first
iteration of IRLS and then fixed for the remaining iterations.

The most interesting aspect of the computation in the final stage is in the
weighting. Let (Xp,,i, Xy ;) be a match, let r; ; = ||x,; — TX(Xpm,;)|| be the fit
residual (the Euclidean distance between the transformed x,,; and x, ;), let
w;; be the robust weight, and let s; ; be the match similarity measure. The
weight calculation requires two steps. First, for each match the robust weights
and similarity measures are multiplied to obtain

* — .. ..
wi,j = W;,jS4,5-

Second, these weights are scaled based on how they stack up against competing
matches. Competing matches are other matches (in I,.) for feature point ¢ (which
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Figure 9: Hierarchical retinal image transformation estimation results. Image
(a) shows features extracted from one image, (b) shows the results of applying
the estimated Oth order translation only model, (c) shows the results of applying
the estimated 1st order, 6-parameter, affine model, and (d) shows the results of
applying the final estimated 2nd order, 12-parameter quadratic model. In each
of (b), (c) and (d), a small region around the optic disk is shown to emphasize
modeling errors.
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is from I;,) or other matches (in I,,,) for feature point j (which is from I.). The
scaling factor is

*
5]

* * *
W+ Dok Wi T Doy Wi

w,

Mij =

This scaling factor will be at or near 1.0 if no other matches for ¢ or j have large
weights, and will be much less than 1.0 if they do. The point is to downgrade the
influence of ambiguous matches. The final weight used in IRLS will be n; jw; ;.
One benefit of this is that it allows matches that were rejected early to re-enter
the computation — if they produce extreme residuals, their weights will be 0
and the computation will proceed as though they didn’t exist.

Figure 9d shows the final alignment between two images based on the robust
estimate of the 12-parameter model. Figure 8 shows a retinal mosaic of many
different images. The effects of the non-linear mapping are most easily seen on
the boundaries of the images.

6 Discussion and Conclusions

This paper has summarized several important robust parameter estimation tech-
niques and outlined their use in three applications in computer vision. Many
other applications have been considered in the computer vision literature as
well, including optical flow and motion estimation [11, 22, 64], edge and feature
detection [48, 56, 58], and pose estimation [29, 41]. Most applications of robust
estimators, like the three emphasized here, are based on least-median of squares,
M-estimators, and their variations.

The observations about robust parameter estimation in the foregoing dis-
cussion can be summarized in three important points.

1. The theoretical limit of the 50% breakdown point can and must be sur-
passed in certain applications. This can be done through use of RANSAC
or Hough transforms if a prior error bound is available, through adap-
tive techniques based on scale estimates such as ALKS [43] and MUSE
[53, 54], or by special-purpose techniques such as the hierarchy of models
used in retinal mosaic construction. Care must be taken to ensure that
the results are meaningful, especially when the estimated structure in-
cludes only a small percentage of the data as inliers. For example, MUSE
[63, 54] incorporates a randomness test based on MINPRAN [67] to ensure
the estimated structures are significant.

2. Without a robust initial estimate, as provided by a high-breakdown es-
timator such as LMS, M-estimation is likely to yield poor results. This
reflects the low breakdown point of M-estimators. Hence, robust initial-
ization is especially important when outliers are numerous. These outliers
cause a non-robust least-squares estimate to be far from correct. Their
presence requires that a weight function such as that of Beaton and Tukey
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[4], which tends to 0 quickly, be used. When using such weight functions,
lower tuning parameters than recommended in the statistics literature
should be used, emphasizing outlier resistance over statistical efficiency.
In a practical though not a theoretical sense, robust initialization is less
important when few outliers are expected and, especially, when leverage
points are non-existent.

3. The nature of the outliers that might arise in the data should be consid-
ered carefully. Most important, of course, is that outliers to one correctly
estimated structure (population) are often inliers to (one or more) other
structures. In this case, successful use of robust estimation depends on
the distribution of points between structures, the physical proximity of
the point sets, and the similarity between the structures themselves. For
example, small magnitude depth and orientation discontinuities in range
data can lead to skewed surface estimates — “bridging fits” — when us-
ing current robust estimators. Similar difficulties are likely in fundamen-
tal matrix estimation when images include proximate objects undergoing
slightly different motions; the extent of the problem has not yet been fully
explored.

The last of these problems is the most difficult. The current best approach
to addressing it is to use mixture model formulations [73] in which multiple
structures are simultaneously and robustly estimated, and data are dynami-
cally assigned to different structures. This has been studied most heavily in
motion and fundamental matrix estimation [3, 40, 77, 78, 79], but should be
used increasing elsewhere. Aside from the added complexity, an important lim-
itation of mixture models is that they are most effective when all structures in
the data can be appropriately modeled. This is sometimes difficult or impossible
and perhaps shouldn’t be necessary when only a single estimate is required, e.g.,
when estimating a planar surface model for a roof, models for the leaves and
branches of trees near the roof should not be required. Unmodeled structures
must be treated as outliers to all models, which reduces to the original robust
parameter estimation problem. Further work is clearly needed.

A new approach currently under investigation combines robust parameter
estimation with boundary estimation in a single objective function [69]. This
makes explicit the fact that structures in computer vision, e.g. object surfaces,
have limited spatial extent. The objective function effectively treats points far
outside boundaries as outliers, but allows structures to “grow” toward regions
of data that are close to the extrapolated estimate. All of this results from the
objective function minimization process. While still in early stages of devel-
opment, this technique has already shown promise of eliminating some of the
problems in local and global surface estimation discussed earlier.

In summary, robust parameter estimation is an important though incom-
pletely solved problem in computer vision. Computer vision data are numerous,
corrupted by noise and outliers, and usually are drawn from multiple statistical
populations (structures). Because robust estimation techniques are designed to
handle corrupted and incompletely modeled data, they provide an attractive set
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of tools for computer vision estimation problems. These tools can not be applied
to vision problems successfully, however, without careful thought about the pop-
ulations (structures) to be estimated and the frequency and nature of outliers.
Successful application can lead to computer vision techniques that accommo-
date substantial variations in the data. This is an important development in
extending the overall reliability of computer vision technology.
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