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Uncertainty-Driven, Point-Based
Image Registration

C. Stewart

Abstract
Point-based registration is the problem of computing the transformation that
best aligns two point sets, such as might be obtained using range scan-
ners or produced by feature extraction algorithms. The Iterative Closest
Points (ICP) algorithm and its variants are the most commonly used tech-
niques for point-based registration. The ICP algorithm may be derived as
the solution to a global optimization problem. A commonly-used lineariza-
tion of the distance function in this optimization problem produces a useful
approximation to the covariance matrix of the ICP-estimated transforma-
tion parameters. Two recent algorithms exploit this covariance matrix to
improve ICP registration. One uses the covariance matrix to sample the cor-
respondences so that the estimate is well-constrained in all directions in
parameter space. A second uses the covariance matrix to guide a region-
growing and model-selection technique that “grows” accurate estimates from
low-order initial estimates that are only accurate in small image regions. Both
show substantial improvements over standard ICP on challenging alignment
problems.

14.1 Introduction

Point-based registration techniques have been used in many applications, ranging
from 3d modeling and industrial inspection to medical imaging. In point-based
registration, the data are geometric point sets,P andQ, such as image feature lo-
cations or 3d range measurements. The points are treated as samples from curves
or surfaces inRn, and they may have associated attributes such as intensity values
or normal vectors. The goal of point-based registration is to compute the transfor-
mation,M : Rn → Rn, that best aligns the point sets. Of particular interest here
are parametric transformation models of the formM(p;θ), wherep ∈ Rn is
point location, andθ is the vector of transformation mapping parameters to be
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Figure 14.1. Synthetic range data sets illustrating the challenges that arise when the set of
surfaces being aligned differ significantly in size. In the example on the left two planar
surfaces have 1 mm deep groves cut into them. When a small amount noise is added to the
data, constraints from matching points on the much larger planar surface prevent matches
along the surface of the grooves from rotating the ICP alignment into place. A similar
effect occurs with the alignment of two data sets from a spherical shell, shown on the right.

estimated. Similarity, affine, projective and quadratic transformations all fit into
this category of parametric models.

Most approaches to point-based registration require establishing correspon-
dence between points fromP andQ. If reliable correspondences are known,
estimating the optimal set of transformation parameters is well-understood. On
the other hand, given an accurate estimate ofθ, establishing correspondence is
straightforward. This poses a classic “chicken-and-egg” problem. This problem is
widely addressed using the Iterative Closest Points (ICP) algorithm, discovered
almost simultaneously in the early 1990’s by several groups [82, 164, 185, 560,
916]. The idea of ICP is straightforward: (1) given a transformation parameter
estimate,̂θ, apply the transformation to a subset ofP, and for each transformed
point find the closest point fromQ; (2) from these (temporary) correspondences,
compute a new transformation parameter estimateθ̂. These two steps are repeated
until an appropriate convergence criteria is met. Important variations on ICP are
discussed and analyzed in [697].

While initialization of ICP is clearly an important issue, the primary focus of
this chapter is convergence. Ensuring proper convergence of ICP is challenging.
Two reasons for this are illustrated in Figures 14.1 and 14.2. First, when there
are significant variations in the sizes and the orientations of the surfaces to be
registered, correspondence constraints from large surfaces can impede the align-
ment of smaller surfaces, mostly due to the effects of noise. Second, when the
point sets represent complicated curve or surface patterns, such as in the vascu-
lar structure of the retina (Figure 14.2), misalignments early in the ICP process
can cause mismatches that drive the algorithm to an incorrect local minimum.
These mismatches often have relatively small alignment errors and therefore are
not eliminated easily using robust estimation.

These two problems — one caused by a lack of balance in the constraints
and one caused by incorrect correspondences — have been addressed recently
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in papers from the 3d modeling literature [339], and from the medical imaging
literature [765]. Underlying both is the use of uncertainty in the transformation
estimate that is computed by ICP. Unlike earlier work, which studied the influ-
ence of uncertainty in point locations [276] and evaluated the uncertainty of the
final ICP result [766], these two new techniques use uncertainty to guide the ICP
estimation process itself. This new theme in registration could have important
implications for developing more reliable and more general-purpose algorithms.

The goal of this chapter is to present this uncertainty-driven approach to regis-
tration. Section 14.2 formulates the point-based registration problem and derives
both the ICP algorithm and the commonly-used normal distance form of ICP.
Section 14.3 derives the transformation estimation equations and resulting ap-
proximate covariance matrix. This is used as a measure of uncertainty in the two
algorithms described in Sections 14.4 and 14.5. The chapter concludes with a
summary of the techniques and an outline of important questions suggested by
the uncertainty-driven approach.

14.2 Objective Function, ICP and Normal Distances

Given are two point sets,P andQ. These points sets are generally discrete, but
they may be formed into a mesh. For expository purposes, however, they may be
modeled in the continuous domain using an implicit function, e.g.f : Rn → R,
such thatQ = {q | f(q) = 0}. The point set registration objective function may
be defined based on the proximity between transformed points fromP and the set
Q:

F (θ;P,Q) =
∑
pi∈P

min
q∈Q
‖M(pi;θ)− q‖2. (14.1)

The goal of registration, now stated more formally, is to find the parameter
estimatêθ minimizing this objective function.

Several approaches to minimizingF (θ;P,Q) are possible. Here are two:

• The approach taken in the ICP algorithm alternates steps of solving the
two minimization problems. The inner minimization (the matching step) in
(14.1) is solved for fixedθ to produce a correspondence setC = {pi,qi},
and then the outer minimization is solved in slightly altered form by re-
placing the inner minimization with just the distance‖M(pi;θ) − qi‖2.
If infinitesimal steps are taken inqi and in θ, this converges to a local
minimum of the objective function.

• Q is represented implicitly using a distance function inRn that is 0 at
locationsq wheref(q) = 0. Example representations include Chamfer
distance measures [103] and octree splines [164]. Derivatives of the objec-
tive function (14.1) may be computed based on computing derivatives of
the distance function without explicitly identifying the closest point inQ.
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Figure 14.2. Example of misregistration of retinal images. Contours in black are blood
vessel centerlines detected in one retinal image and contours in white are blood vessel
centerlines detected in a second retinal image (of the same eye). The complexity of the
structure of the vessels, together with a small initial misalignment, causes ICP to mismatch
a significant fraction of the contours and converge to an incorrect estimate.

The focus of this chapter is on the ICP approach, which has been used widely,
especially in the range image literature [697].

With the focus on ICP, the matching step must be examined in more detail.
Using the implicit function definition ofQ, the minimization

min
q∈Q
‖M(pi;θ)− q‖2 (14.2)

becomes

min ‖M(pi;θ)− q‖2 subject tof(q) = 0.

Writing this using Lagrange multipliers and introducing the simplifying notation
p′i ∼= M(pi;θ) creates the function

h(q, λ) = ‖p′i − q‖2 − 2λf(q),

which must be minimized simultaneously overq and λ. Computing partial
derivatives∂h/∂q and∂h/∂λ and setting the results equal to 0 yields

(p′i − q)− λ∇f(q) = 0

f(q) = 0 (14.3)

Solving this, in turn, requires an iterative technique. Letqi be the current best esti-
mate of the closest point. After the iterations converge it will be the corresponding
point forpi in ICP. Linearizingf aroundqi produces

f(q) = (q− qi)Tηi = 0 and ∇f(qi) = ηi,
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Figure 14.3. Illustrating the linearization of implicit functionf that defines point setQ.
Let p′i be a transformed point fromP, letqi be the closest point fromQ, and letηi be the
local surface normal. (The linearization is pictured as the dashed line segment.) A small
change in the transformation that movesp′i to p′′i does not require recomputation of the
closest point fromQ in order to compute the (approximate) distance fromp′′i toQ.

whereηi is the normal tof at qi. Substituting these into (14.3) produces the
system of equations (

I ηi
ηTi 0

)(
q
λ

)
=
(

p′i
ηTi qi

)
.

Solving yields

q = p′i − ηiη
T
i p′i + ηiη

T
i qi. (14.4)

This produces an updateqi ← q. This point, however, does not satisfyf(q) = 0,
a problem that must be solved by moving along the constraint surface in direction
q− qi rather than directly making the substitutionqi ← q. This important detail
is not a concern here, however, because the current focus is on approximating the
objective function.

The approximate closest point in (14.4) may be substituted back into the dis-
tance calculation equation (14.2) to yield a simplified but approximate calculation
of distance. After some manipulation this yields,

min
q∈Q
‖M(pi;θ)− q‖2 = a[(M(pi;θ)− qi)Tηi]

2, (14.5)

wherea = ηTi ηi. Whenf(q) is a distance function,a ≈ 1 because a unit step
normal to the surface produces a unit change in distance. This is equivalent to
assumingηi is a unit vector, an assumption made throughout the remainder of
this chapter. As illustrated in Figure 14.3, equation (14.5) simply reflects the fact
that computing the minimum distance between a point and a linear structure does
not require knowing the closest point on the linear structure; all that is needed is
any point from the structure and the normal vector.

Turning back to the original problem of estimating the transformation parame-
ters, (14.5) may be substituted into the original objective function (14.1) to obtain
the approximation

F (θ;P,Q) =
∑
pi∈P

[(M(pi;θ)− qi)Tηi]
2. (14.6)
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This approximation allows the calculation of the point-registration objective func-
tion without updating the correspondences.1 It is valid as long as changes in the
transformation parameters keep mapped pointsM(pi;θ) in locations where the
linearization aroundqi is valid. This is used in deriving the covariance matrix in
the next section. Equation 14.6 also leads to the “normal-distance” form of the
ICP algorithm, originally proposed in [185]. The summation on the right-hand
side of (14.6) is minimized for a fixed set of correspondences to estimate the next
set of transformation parameters. The fact that this is a closer approximation to the
true underlying objective function shows why use of normal distance constraints
causes much faster and more reliable convergence of ICP [697].

14.3 Parameter Estimates and Covariance Matrices

The next step is to derive equations for estimating the transformation parameters
given a fixed set of correspondences,C = {(pi,qi)}. This leads directly to an
approximation for the covariance matrix of the resulting estimate.

The derivation starts with a simplified form of the transformation model:

M(p;θ) = p + X(p)θ. (14.7)

A few examples will clarify this revised form. For a 3D rigid transformation using
a small angle approximation (see [339], e.g.),

M(p;θ) = Rp + t ≈ p + r× p + t = p +
(
S I

)(r
t

)
.

Here,r is the vector of small angle approximations,t is the translation, andS is
the skew-symmetric matrix such thatSr = r×p. This form is used for estimating
incremental estimates of a rigid transformation. Writing an affine transformation
in the form (14.7) is straightforward.2 A 2D quadratic transformation is written

M(p;θ) = p +
(
x(p)T 0T

0T x(p)T

)
θ.

Hereθ is a 12x1 vector and ifp = (u, v)T thenx(p) = (1, u, v, u2, uv, v2)T .
Using the form of (14.7), the normal-distance ICP equation (14.6) for a fixed

set of correspondences becomes

F (θ; C) =
∑

(pi,qi)∈C

[(pi + X(pi)θ − qi)Tηi]
2. (14.8)

1See [576] for a recent generalization to second-order approximations.
2Planar homographies may not be written in this form because side constraints must be imposed

on the parameter vector. Different derivations of the estimation equations and covariance matrices are
needed, combining the normal-distance form of (14.6) with the covariance derivations in [389, Ch. 4].
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Rewriting,

F (θ; C) =
∑

(pi,qi)∈C

[ηTi X(pi)θ − ηTi (qi − pi)]2

= (Xθ − y)T (Xθ − y) (14.9)

where

X =

ηT1 X(p1)
...

ηTkX(pk)

 and y =

ηT1 (q1 − p1)
...

ηTk (qk − pk)

 .

Taking the derivative with respect toθ, setting the result to0, and solving yields
the estimate,

θ̂ =
(
XTX

)−1
XTy. (14.10)

This has the structure of a linear regression problem. Making the simplifying
assumption (discussed below) thaty is the only random variable, the expected
value of the estimate is

θ = E[θ̂] = (XTX)−1XTE[y].

Moreover, ify is independent and identically distributed (i.i.d.), with covariance
matrixσ2I, then the covariance matrix of the parameter estimate is

Σθ = E[(θ̂ − θ)(θ̂ − θ)T ] = σ2(XTX)−1 (14.11)

When robust weighting of the correspondences is added (see, e.g. [764]), the
estimate becomes

θ̂ =
(
XTWX

)−1
XTWy. (14.12)

whereW is a diagonal matrix of the weights of the individual constraints. The
parameter estimate covariance matrix is then approximately

Σθ = E[(θ̂ − θ)(θ̂ − θ)T ] = σ2(XTWX)−1 (14.13)

The approximate covariance matrix has been used in a number of algorithms,
including the ones described here. Before proceeding to these, it is impor-
tant to examine the assumptions and approximations underlying the foregoing
derivation.

• The derivation of the covariance matrix that started from (14.6) is based on
a fixed correspondence set. The prior derivation leading to (14.6) showed
that (14.6) is a good approximation to the original objective function (which
involves changing correspondences) when changes in the transformation
are not large enough to invalidate the linearization around the pointsqi.
This is true in particular as the overall algorithm — not just the estimate for
a fixed set of correspondences — nears convergence.
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• In deriving (14.11) from the estimate equation (14.10), the matrixX is as-
sumed to depend only on deterministic quantities. For this to hold, point
locationspi are treated as deterministic. While this clearly underestimates
the uncertainty, the effects of this should be small since thepi values
themselves will be much larger than errors inpi.

• Errors in the normal directions are assumed to be small enough that any
resultant errors in projections onto the normal vectors — as inηTi X(pi)
andηTi (pi − qi) — are relatively insignificant. Since the errors in these
projections will be proportional to the error in the orientation and since
for small error angles,φ, cosφ ≈ 1, this is reasonable, especially as the
algorithm converges.

• Weight matrixW is also assumed to be non-random. Since eachwi de-
pends on the error in the correspondence and therefore in the transformation
itself, this is again an oversimplification.

• Finally, ηTi (pi − qi) is assumed to be i.i.d. In part this says that all er-
rors in the point positions are along the normal direction. On the negative
side, this ignores errors that depend on the sensor direction [276]. On the
positive side, since the point sets are treated as sets of samples from contin-
uous manifolds, the errors in the point positionsq tangent to the manifold
keep the points (almost) on the manifold and do not change the distance
measurement significantly.

Overall, it should be clear that the derived covariance matrix (a) is only a rough
approximation of the true covariance matrix, (b) the approximation becomes more
accuracte as the ICP estimation process nears the minimum, and (c) the primary
effect of the approximation is that the magnitude of the covariance matrix is
under-estimated.

14.4 Stable Sampling of ICP Constraints

This section and the next present applications of the covariance matrix estimate
in ICP algorithms that address the two problems described in the introduction.
This section considers the situation (Figure 14.1) where the ICP correspondences
match points from the same surface in the two different data sets and are therefore
in a sense “correct”, but they still do not pull the estimate in the direction needed
to correctly align the surfaces.

This problem is addressed in [339] by using the covariance matrix to select
a subset of the correspondences that will constrain the transformation estimate
as uniformly as possible in all directions. This sampling strategy is governed
by a spectral decomposition of the parameter estimate covariance matrix and its
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inverse:

Σ−1

θ
=

1
σ2

(
XTWX

)
=

m∑
j=1

λjγjγ
T
j , Σθ =

m∑
j=1

(1/λj)γjγ
T
j . (14.14)

Theλj ’s andγj ’s are the eigenvalues and eigenvectors, respectively, of the in-
verse covariance matrix, ordered so thatλ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. Theλj
values represents the “stability” — the inverse of the variance — in directionγj
in parameter space. Ideally, the stability values for each direction should be ap-
proximately equivalent. Stated another way, the condition numberλ1/λm should
be as small as possible.

Consider the constraints from Equation (14.9) and in particular consider the
projection of the constraint for correspondencei onto eigenvectorj:

ηTi X(pi)γj . (14.15)

The magnitude of this projection tells how much theith point correspondence
constrains the transformation in thejth direction in parameter space. Given a
subsetC′ of the correspondence setC, the value

s2j =
∑

(pi,qi)∈C′
[ηTi X(pi)γj ]

2/|C′| (14.16)

is roughly proportional to the inverse variance of the estimate in thejth direction
based on the subset. The goal of the stable sampling algorithm is to find a subset
that makes theses2j values as close to equal as possible, thereby constraining the
estimate equally-well in all directions.

The steps involved are:

1. Compute the inverse covariance matrix and its eigenvector decomposition
from a small initial setC′ of correspondences in the region where the
data sets overlap. These correspondences and the overlap region must be
computed using an earlier ICP parameter estimate.

2. Computes2j for each eigenvector based on the initial set.

3. For eigenvectorj with the smallests2j , choose the correspondence from
the overlap region that has the greatest magnitude of (14.15), add it to the
correspondence setC′, and updates2j (14.16) for all eigenvectors. Note that
the chosen correspondence is taken fromC − C′.

4. Repeat until a sufficient number of correspondences have been selected or
until the addition of a new correspondence starts to increase the approxi-
mate condition number — the ratio between the largestsj value and the
smallest. The second condition tests if the constraints available to increase
the stability of the smallest eigenvalue have been exhausted.

For details of the data structures and search algorithms that make this compu-
tation efficient, see [339]. Two other important details should be mentioned here,
however.
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• The parameter vectorθ involves parameters of different units, including
rotation angles and terms of differing orders. Numerically, the individual
components ofθ are not comparable; they can differ by several orders
of magnitude. To solve this, the subsets ofP andQ that form the cor-
respondences should each be centered and then normalized so that the
average magnitude of corresponding pointspi andqi are each 1 [339, 389].
All computations of the sample selection technique should be done in the
centered and normalized system.

• The constraintηTi X(pi) depends on a point location fromP and a normal
from Q. This means sampling must be applied after correspondences are
formed, even though many correspondences will not be used. This wasted
computation may be avoided easily. Observe that after the ICP algorithm
has removed the worst of the misalignments, the surface normals of the
transformed pointspi should be roughly parallel to the normals fromqi.
Therefore, the transformed normals frompi can be used in place of the
normals fromηi in the above calculations. This means the sampling can be
computed prior to establishing correspondence.

The overall computation places a third step in each iteration of ICP: (1) ap-
ply stable sampling to select a subset of the points in the overlap region, (2)
establish matches (correspondences) for these points, and (3) compute the new
transformation estimate using the correspondences.

Using this technique, the two problem examples shown in Figure 14.1 are each
correctly aligned. For the iteration starting from the positions shown in the figure,
the condition numbers dropped from 66.1 to 3.7 for the planes and from 26.9
to 4.1 for the spheres using stable sampling. The RMS alignment errors after ICP
converged using stable sampling were in each case a factor of 3 lower than when a
spatially-uniform sampling of point setP was used. See [339] for more examples.

14.5 Dual-Bootstrap ICP

The second algorithm that exploits the covariance matrix during the registration
process is designed to avoid the problem of mismatches due to poor initialization.
The problem occurs in particular in the registration of retinal images because of
the complexity of the vascular structure and the effects of disease.

The Dual-Bootstrap algorithm described here uses points detected along the
centers of blood vessel curves [146, 331] as the registration point setsP andQ.
Registration is initialized using matches between landmarks — branching and
cross-over points of the vessels — detected in the two images. Unfortunately,
images with significant pathologies sometimes have very few landmarks and even
fewer that match correctly for initialization. Therefore, the approach taken is a
hypothesize-and-test method, where single correspondences are generated to form
initial transformation estimates that are only accurate in small image regions. The
Dual-Bootstrap algorithm tests each small region and initial estimate separately
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Figure 14.4. Initial (upper left), intermediate (upper right, lower left), and final (lower right)
results of the Dual-Bootstrap ICP algorithm on a pair of retinal images. Vessel centerlines
forming the point setsP andQ are shown using white and black contours. The rectangle
drawn on top of the images shows the current region,R. The images are well-aligned
within R in each iteration, and asR is expanded to cover the entire overlap region, the
overall estimate converges to an accurate alignment.

by “growing” an image-wide transformation estimate. If the initial transformation
is moderately accurate the Dual-Bootstrap algorithm rarely fails to produce an
accurate result.

Dual-Bootstrap ICP works by iterating three steps, illustrated in Figure 14.4:

1. It applies one iteration of ICP using only points from the current region,R
(the highlighted rectangle in the panels of Figure 14.4).

2. Based on the correspondences and the covariance matrix, the best transfor-
mation model is selected from among a set of possible models. Initially,
when the region is small, there are only sufficient constraints for a similar-
ity transformation. The eventual image-wide transformation is a quadratic
model [147]. In between, the algorithm can select an affine transformation
or a simplified version of the quadratic transformation.



232 Stewart

3. The Dual-Bootstrap algorithm uses the uncertainty in the transformation to
expand the boundary of the region,R. More stable transformations lead to
faster region growth.

These steps are repeated until the entire process converges for the given initial
estimate. If the final estimate covers the apparent overlap between images and is
sufficiently accurate and stable, the estimate is accepted as correct. Otherwise,
another starting landmark correspondence and associated region is tried. This
greedy process terminates and indicates that no alignment is possible if the initial
possibilities are exhausted.

The model selection and region growing steps are most relevant to the theme of
this chapter, so they are discussed in more detail in the remainder of this section.

Model selection techniques [135, 799] choose the model that optimizes the
trade-off between the alignment accuracy of high-order models and the stability
of low-order models, with stability being measured using the covariance matrix
of the parameters. The Dual-Bootstrap ICP model selection criteria is based on
the expression (see [135] for a derivation):

d

2
log 2π −

∑
i

wir
2
i +

1
2

log det(Σˆθ
), (14.17)

where d is the number of degrees of freedom in the model,
∑
i wir

2
i is the

sum of the robustly-weighted alignment errors (ri = (M(pi; θ̂) − qi)Tηi), and
det(Σˆθ

) is the determinant of the parameter estimate covariance matrix. Intu-

itively, for higher-order modelsd increases,−
∑
i wir

2
i increases (because the

residuals decrease), anddet(Σˆθ
) decreases because the models are less stable.

In choosing the best model, (14.17) is evaluated for a set of models using a fixed
correspondence set. The model with the greatest value of (14.17) is chosen.

The growth of the region in step 3 of the Dual-Bootstrap algorithm is based on
the uncertainty in the mapping of point locations on the boundary of the regions.
This uncertainty is computed from the covariance of the transformation parameter
estimate using fairly standard covariance propagation techniques, often called the
“transfer error” [389, Ch. 4] in the computer vision literature. As before, letp′ =
M(p, θ̂) be the mapping of point locationp. The covariance of this mapping is
approximately

Σp′ = JΣθJT

where

J =
∂M
∂θ

(θ̂) = X(p),

using the definition ofM from (14.7). No uncertainty inp is considered because
p is treated simply as a position in the coordinate system of setP, not an estimated
point location.

The transfer error is used to expand each of the four sides of region rectangle
R (Figure 14.5). Letps be one of these points, described in a coordinate system
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s

R

p

Figure 14.5. Expansion of the regionR in the Dual-Bootstrap ICP algorithm. The center
of each side of the region rectangle is pushed outward in inverse proportion to the transfer
error variance. This means that more certainty in the transformation leads to faster growth
in R. The new region is the axis-aligned rectangle formed by the four outwardly-moved
points.

centered on the rectangle, and letp′s be its mapping into the coordinate system
of Q. Let ηs be the outward normal of the side of the rectangle and letη′s be the
mapping of this normal into the coordinate system ofQ. The variance ofp′s in
the outward direction isσ2

s = η′s
TΣp′sη

′
s. Using this, the outward movement of

ps is:

∆ps = β
(pTs ηs)

max(1, σ2
s)

(14.18)

This growth is proportional to the current distance (pTs ηs) of ps from the center of
R, and is inversely proportional to the transfer error in the normal direction. The
lower bound of 1 in the denominator prevents growth from becoming too fast. The
center of each side ofR is expanded outward independently using Equation 14.18,
and the new region is the axis-aligned rectangle formed by the resulting four
points (Figure 14.5). Parameterβ controls the growth rate; the setting used in
practice,β =

√
2−1, ensures that the area ofR at most doubles in each iteration.

The Dual-Bootstrap ICP algorithm has been tested on thousands of retinal
image pairs, including images of unhealthy eyes in various stages of disease pro-
gression [765, 810]. Overall, when there is at least 30% overlap between images,
at least one starting correspondence, and enough extracted vessels to form a sta-
ble covariance matrix, the algorithm never fails. Together, the region growth and
model selection techniques work to keep the algorithm near the optimal estimate
within regionR. More detail about the behavior of these techniques is as follows:

• Model selection is imperfect. The algorithm tends to switch to higher-order
models too early. Estimation errors in these higher-order models may lead
to more mismatches, especially on the region periphery. Empirically, the
implementation uses the heuristic that the quadratic model may not be used
until the region has grown to 20% of the image size. A likely cause of this
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problem is that the covariance matrix used underestimates the amount of
uncertainty.

• Region growth, on the other hand, works extremely well. One measure of
this is that halving or doubling the growth rate does not change the effec-
tiveness of the algorithm. Removing region growth altogether, on the other
hand, reduces the number of image pairs that the algorithm is able to align
by 16%.

14.6 Discussion and Conclusion

This chapter has addressed the problem of point-based registration, focusing
on the use of covariance-based techniques to improve the performance of the
iterative closest point (ICP) algorithm in both range image and retinal image
registration. The chapter started by formulating the objective function and then
deriving the normal distance version of ICP. This provides a locally-accurate
approximation to the overall objective function without the need for rematch-
ing. This approximation was then used to derive the equations for estimating the
transformation parameters and the covariance matrix of this estimate. Several sim-
plifying assumptions were used in deriving this matrix. These assumptions lead
to an underestimate in the overall amount of uncertainty, but are a reasonable
approximation as the overall ICP process nears convergence.

The chapter then summarized two algorithms in which the covariance matrix is
used to modify the behavior of ICP. In the stable sampling algorithm of [339], the
covariance matrix is used to guide the selection of correspondences, ensuring that
all directions in parameter space are well-constrained. Geometrically, this allows
the ICP algorithm to accurately align small-scale surfaces. In the Dual-Bootstrap
ICP algorithm of [765], the covariance matrix is used to grow a transformation
estimate and its associated region, starting from a small region surrounding a
single correspondence. The covariance matrix helps avoid mismatches between
vascular structures by controling the growth of the region and the selection of
transformation models. Empirical results show that in both algorithms the use of
the covariance matrix substantially improves the registration results.

The algorithms work well despite the approximations needed to compute the
covariance matrix. The main reason for this effectiveness is that the covariance
matrix plays its most important role as the algorithms near convergence. Stable
sampling only has a significant effect when the dominant structures of the data are
well-aligned — the small surface misalignments then appear in the eigenvectors
of the smaller eigenvalues and may therefore be corrected through the sampling
procedure. In the Dual-Bootstrap algorithm, the alignment is always close to con-
vergence in regionR, even when the alignment appears to be poor throughout the
image. This means that the parameter estimate covariance matrix may be used to
guide the growth and model selection based only on points fromR.
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The work described here offers a new approach to improving the performance
of registration algorithms — using the uncertainty in the estimates being com-
puted to guide further steps in the overall algorithm. This is reminiscent of
recursive estimation techniques such as the Kalman filter [637], but in the new
algorithms uncertainty is used more broadly, beyond the estimation equations
themselves. This could point toward the development of a variety of new algo-
rithms. Moving in this direction requires that a number of issues be addressed. On
the theoretical side, a new and more accurate approximation of the covariance ma-
trix is needed that depends on fewer assumptions. One approach might be the use
of resampling methods such as the bootstrap technique from statistics [295]. On
the more applied side, a second advance would be integrating uncertainty-driven
methods with approaches to initialization based on keypoint matching [121]. A
third advance would be incorporating uncertainty information into deformable
registration, one of the most important problems in medical image analysis.
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