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MINPRAN: A New Robust Estimator
for Computer Vision

Charles V. Stewart, Member, IEEE

Abstract—MINPRAN is a new robust estimator capable of
finding good fits in data sets containing more than 50% outliers.
Unlike other techniques that handle large outlier percentages,
MINPRAN does not rely on a known error bound for the good
data. Instead, it assumes the bad data are randomly distributed
within the dynamic range of the sensor. Based on this, MINPRAN
uses random sampling to search for the fit and the inliers to the fit
that are least likely to have occurred randomly. It runs in time
O(N® + SN log N), where S is the number of random samples and
N is the number of data points. We demonstrate analytically that
MINPRAN distinguished good fits to random data and
MINPRAN finds accurate fits and nearly the correct number of
inliers, regardless of the percentage of true inliers. We confirm
MINPRAN’s properties experimentally on synthetic data and
show it compares favorably to least median of squares. Finally,
we apply MINPRAN to fitting planar surface patches and elimi-
nating outliers in range data taken from complicated scenes.

Index Terms—Surface reconstruction, robust estimation, range
data, parameter estimation, outliers.

I. INTRODUCTION

R OBUST vision techniques are needed to accurately fit
parametrized functions to intensity, edge, or range data
while ignoring gross errors (“outliers”) in the data [15], [23],
[33]. Since outliers are typical of both real-world sensors and
low-level vision algorithms, robust techniques become more
important as computer vision systems move from controlled
laboratory settings to real applications. Already, a variety of
robust techniques have been used in computer vision, some
developed within the vision field [6], [8], [10], [11], [16], [34],
others borrowed from statistics [3], [12], [15], {211, [25], [27].

Robust techniques may be characterized by their
“breakdown point,” the highest fraction of arbitrarily bad data
that can be tolerated without these data being able to com-
pletely corrupt a fit [21]. For example, least sum of squares
has a breakdown point of O because one arbitrarily bad point
can completely corrupt a fit, regardless of the number of good
points. On the other hand, least median of squares {20] has a
breakdown point of (.5 because up to half the data may be bad
without altering the fit. However, for a variety of reasons, illus-
trated in Fig. 1, robust vision techniques often require a higher
breakdown point:

e When more than half the data are bad, the correct fit may
still be readily apparent.

e When the data arise from multiple surfaces, the points
belonging to one surface are essentially outliers
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(“pseudo-outliers”) with respect to the other surface(s),
and fewer than 50% of the points may belong to any one
surface.

* More than one surface may overlap the same image co-
ordinates. This can occur if one surface is partially trans-
parent, such as a wire fence, or when data from multiple
views are merged. Here, the underlying surfaces can not
be modeled as a single piece-wise continuous function of
the image coordinates, and fewer than 50% of the data
may arise from one surface.

A good robust estimator should find accurate fits in each of
these cases. Furthermore, a good robust estimator should not
“hallucinate” when there is no correct fit, as in Fig. 1d.

c d

Fig. 1. Four example plots of synthetic depth data from 12 x 12 image re-
gions. For each data set, the sensor viewpoint is from below the plot. Plot (a)
contains 60% outliers. Plot (b) contains three different surfaces in a small
region. Plot (c) contains two different surfaces that completely overlap in the
region. In each case, none of the surfaces contain more than 50% of the points
in the region, yet all correct fits are readily apparent. Plot (d) contains all
random points and no correct fit is visible.

Rousseeuw argues the theoretical maximum breakdown
point is 0.5 because if more than half of the data are bad they
may ‘‘conspire” to look better than the correct fit [21]. If, how-
ever, we assume such a conspiracy is unlikely, we should be
able to tolerate higher percentages of bad data, at least in a
probabilistic sense. This implies we need to make some as-
sumptions about the distribution of bad data. Hough transform
techniques [2}, [10] and Ransac techniques {8] can accept fits
involving fewer than half of the data points by making an ex-
plicit assumption about the good data and an implicit assump-
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tion about the bad data. First, these techniques assume the
good data are within a known distance (inlier bound) of the
correct fit. Additionally, in order to distinguish good fits from
random fits, they must implicitly assume the bad data are uni-
formly distributed [8], [9], [19]. In contrast, our new robust
estimator surpasses the 0.5 breakdown point solely by assum-
ing the bad data are uniformly distributed.' From this assump-
tion we derive a criterion function to measure the probability a
configuration of points near a hypothesized fit could have oc-
curred randomly. Using this criterion function, we search a
space of hypothesized fits, identifying the least random fit and
its collection of inliers. We call the resulting estimator
“MINPRAN” (MINimize the Probability of RANdomness).
Among existing robust techniques, MINPRAN is most
similar to least median of squares (LMS) [15], [20], [25],
which has a 0.5 breakdown point and (like MINPRAN) does
not require a known inlier bound. Hence, we demonstrate
MINPRANs strengths by contrasting it with LMS.

e In finding the best fit, MINPRAN finds nearly the correct
number of inliers, even when fewer than 50% of the
points are inliers to any one fit. In fact, fits with an arbi-
trarily low inlier percentage (> 0) may be found, as long
as the bad data are random and the good data are close
enough to the correct fit.

» Since it identifies and uses essentially all of the inliers,
MINPRAN produces more accurate fits than LMS, in-
cluding more accurate estimates of the variance in the
data.

¢ MINPRAN does not “hallucinate” fits when there is no
correct fit, and with a slight modification to its basic
search strategy, MINPRAN can find multiple fits when
warranted by the data. LMS always finds exactly one fit
for each set of data.

In this paper, we derive and analyze the MINPRAN estima-
tor, presenting a theoretical analysis (backed by simulation
results) of MINPRAN’s ability to find good fits, to avoid hal-
lucinating, and to surpass the 0.5 breakdown point. We then
generalize MINPRAN’s randomness model to arbitrary outlier
distributions. Finally, by modifying the basic estimator to re-
liably find multiple fits in a data set, we develop a robust
technique to fit surface patches to range data taken from
complicated scenes. Note that during the theoretical discussion
in most of the paper, we describe the data input to the estima-
tor as a set of points. Only in Section VII, when we apply
MINPRAN to range data, do we refer to images and the image
regions to which the estimator is actually applied.

II. PROBABILITY OF RANDOMNESS
CRITERION FUNCTION?

As the basis of our approach, we assume the dynamic range
of the “sensor” (the source of the data) is known, and the bad

1. Later in the paper, we will relax this assumption to allow any outlier
distribution.

2. The notation has changed since earlier published versions of the work
[29], (301, [31], [32].

data values are uniformly distributed within this dynamic
range. Knowing the dynamic range of the sensor can be as
simple as knowing the range of gray levels in an intensity im-
age, the disparity range in stereo data, or the depth interval to
which a range sensor is tuned. (We extend the model to non-
uniform outlier distributions in Section VI.) In assuming the
outliers are uniform within the dynamic range, we assume
there is no known bias in the outlier data. From this assump-
tion, we derive a criterion function based on the probability a
given fit and its set of inliers could be due to purely random
data.

Suppose a set of N points is drawn from a uniform distribu-
tion of z values in the range Z,,;, to Z,,,, and consider a curve
(or surface) ¢ and a distance r. Assuming ¢ + r is entirely
within the range Z,;, to Z,, (as in Fig. 2), the probability at
least k points randomly fall within the range ¢ + r is given by a
simple binomial distribution,

SV o

where Zy = (Zpax — Zmin)/2. Defining the function F(r, &, N) to
be this probability, we will use F as the basis for a criterion
function that evaluates hypothesized fits to a data set. Before
showing how we do this, we state two important properties of
F which follow directly from the binomial distribution and its
equivalence to the incomplete beta function [1]:

F(r.k N)= %k‘(]:lj[zL)(“ZLJN
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Fig. 2. If the data are uniformly distributed in the range Zyin to Zmax, then the
probability that at least k points are within + r of ¢(x) is given by a binomial
sum.

LEMMA 1. F(r, k, N) > F(r, j, N), for k, j, 1 Sk < j < N and for
fixedr,0<r<Z,

This states that the probability J decreases monotonically as
the number of points in ¢ + r increases. It follows directly
from (1) since increasing the number of point S in ¢ + r from £
to j removes terms from the binomial summation.
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LEMMA 2. F(r, k, N) < F(s, k, N), for 0 < r < s £ Z; and for
fixedk, 1Sk<N.

This lemma states that for a fixed number points in ¢ + r, the
probability F increases monotonically as the distance r in-
creases. It follows directly from (2) because increasing from r
to s only increases the upper limit of integration, and since the
integrand is strictly positive, this increases the value of the
integral.

To derive our criterion function, let there be N data points
and consider ¢ as a hypothesized fit to the data. Let r define an
“inlier bound” to ¢: points failing within ¢ + r are labeled in-
liers; points falling outside ¢ + r are labeled outliers. Further-
more, let k,, be the number of data points within ¢+, ie. the
number of points labeled inliers. (We use subscripts on k since
it is completely determined by ¢ and r.) Then, F(r, k,, N)
gives the probability there could be least k,, inliers within the
inlier bound r of ¢ if all N points were random. If this prob-
ability is extremely low, it is unlikely all the points are really
from a uniform distribution and much more likely at least some
of them correspond o a curve (or surface, in three dimen-
sions). Therefore, we use F to rate the “randomness” of a hy-
pothesized fit to a data set, choosing as its representative value
the minimum of F over all possible inlier bounds r:

H (9. N) = min F(r. ks, N)

H (¢, N) is our “probability of randomness” criterion function.
We search over the range of r to minimize F since we assume
neither a fixed inlier bound (unlike Hough transforms and
Ransac) nor a fixed number of inliers (unlike LMS).

Although r is continuous, calculating H (¢, N) does not re-
quire examining all r, since F (r, k,,, N) has at most N local
minima. This is established formally in the following lemma.

LEMMA 3. For any hypothesized fit, ¢, to N data points, there
are at most N local minima of F (r, ko N). These local
minima occur at the absolute residuals of the N points
relative 10 ¢.

PROOF. Let r be an inlier bound for ¢ and let k,, be the number
of points within ¢ = r. (Since F(r, 0, N) = 1 for all r < Z,
Fr, 0, N) cannot be a local minimum, so we do not con-
sider values of r where k¢, = 0.) Then, if we examine the
(absolute) residuals of the N data points, there must be ex-
actly k,, residuals less than or equal to r. Hence, letting
k = k,, and writing the absolute residuals in non-decreasing
order, ry, ..., r'x, We must have ry < r < ra. If r > r, then ac-
cording to Lemma 2, Fri, k. N) < (s, k, N) < Fr, k, N),
for r; < s < r, and there is no local minimum at r. Therefore,
the local minimum of Fr, k,,, N) can only occur when
r = ry for some k. a

This lemma implies if r,;, 1 i< N, are the fit residuals of
the N points relative to @, then

H(p, N)= min Flrp s N). 3)
We take this as the final definition of the probability of ran-
domness criterion function. (In cases where it is clear the re-
siduals are relative to a particular fit, we drop the subscript ¢
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and write the residuals as 7;.) The goal of the MINPRAN al-
gorithm will be to minimize JH (¢, N) over a space of possible
fits to a given set of N data points. Associated with the mini-
mum will be both an inlier bound and a set of inliers. When the
minimum of 7 is small enough, we will take the minimizing
fit and its set of inliers as representing a curve or surface in the
data (otherwise we say there is no curve or surface in the data).

Before describing MINPRAN, we make two concluding ob-
servations about JH. First, since the binomial summation defin-
ing F may be computed in time O(N) (using a recurrence rela-
tion to generate the O(N) terms of the summation), H (¢, N)
may be computed in O(N?) time by calculating and sorting the
residuals, 7,;, and then evaluating .T(ﬂ.i’ i, N) for each i. Sec-
ond, we would obtain exactly the same criterion function if we
assumed the fit residuals of the outliers were uniformly dis-
tributed in the range [0 ... Zy). Since this is only slightly dif-
ferent from what we actually assumed (it is equivalent when ¢
is in the center of the depth range), we will use this assumption
in several stages of our analysis of MINPRAN,

1. THE MINPRAN ALGORITHM

Given a set of data points, we need an algorithm to find the fit
to the data minimizing our probability of randomness criterion
function, H. The fit may be a linear function, such as a line for
two-dimensional data or a plane for three-dimensional data, or it
may be any other parameterized function. (In general, fits are of
the form f(X, a) = 0, where X is the vector of model variables
and @ is the vector of model parameters.) By extending an
O(N * log N) algorithm for least median of squares (LMS) re-
gression {26], we have obtained an O(N 3) time algorithm to find
the line minimizing 4 in two dimensions. We hypothesize the
planar fit minimizing J{ in three dimensions can be found in
O(N'*). Because these times are impractical for computer vision
applications, we employ a random sampling technique [8], [15],
[19], [20] to find an approximate minimum.

Assuming p points are required to completely instantiate a
fit and there arc N = N + p data points’, MINPRAN chooses §
distinct, but not necessarily disjoint, random subsets of p
points from the data, and finds the fit to each random subset to
form S hypothesized fits, ¢y, ..., ¢s. (See Roth and Levine[19]
for a discussion of function fitting procedures in this context.)
MINPRAN selects the fit minimizing H (¢, N) as the “best
fit”.

As discussed above, evaluating H (¢, N) for each hypothe-
sized fit, ¢, requires O(N?) time, yielding an O(SN?) algorithm
to find best fit among the S fits tested. To improve upon this,
observe the computation is dominated by the SN evaluations of
F (1), once for each (ordered) residual to each fit. Fortunately,
as stated in the following theorem, only N of these evaluations
are necessary.

3. We use the notation N" = N + p points because the p points chosen to in-
stantiate a fit will automatically have 0 residuals relative to the fit; thus,
MINPRAN considers only the residuals of the remaining N points in evaluat-
ing the criterion function H. This maintains consistency with other discus-
sions throughout the paper.



928 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 10, OCTOBER 1995

THEOREM 1. For a set of N data points and S fits, ¢y, ... @5, to
these data points,

min.’}{(qu, N) = min f(r;, i, N),
i i
where 1, = mjn{rd,j'i} and ry ;is the ith ordered residual
i

relative to ¢;.

PROOF. Let 7y 1, ..., Iy n be the residuals of the N points rela-
;1 ¢;.N

tive to ¢. Then, according to the definition of Hin (3),

min (9, N) = min{min F(r, ;. i N}

- miin{mjn Flry v N)}

J
Let r,.* = min{rq,J i1 1e., r; is the smallest ith residual across
; .

the S fits. Then, because F(r, i, N) increases monotonically
with r for fixed i (Lemma 2), minF( rs,i» i N)
i

= F(r', i, N). Substituting this into the expression for
min 5'-{(¢j, N) gives the result. (m|
j

Thus, to find the best fit, MINPRAN computes the N re-
siduals to each fit, compares the residuals between fits to find
ri i=1, ..., N, and evaluates F(r;, i, N) for each i. Let ¢, i
and r* be the fit, the number of inlier residuals, and the inlier
bound producing the minimum. Computationally, calculating
the N residuals to each of the S fits and sorting each set of re-
siduals requires O(SN log N) time, finding the r; values re-
quires O(SN) time, and the N evaluations of F require O(N o)
time. This gives O(SN log N + N*) time to find ¢".

If F(r, i, N) < Fo, where F; is a “randomness threshold”
derived below, then ¢ is accepted as a correct fit. Otherwise,
no fit is accepted. A final least-squares fit involving the p + i’
inliers (the p points used to instantiate ¢" plus the i inlier re-
siduals) to ¢ produces a more accurate estimate of the model
parameters than the initial estimate using just p points, and
estimates the noise variance, o, of the data.

MINPRAN’s random sampling process may be repeated to
find more than one acceptable fit to the data (see Fig. 1, for
example). In doing so, the p + i inliers to ¢" are excluded from
the random sampling and residual calculation processes. (This
assumes correct fits include disjoint subsets of the data as in-
liers.) H(¢, N) is still calculated assuming there are N residu-
als, however, to subject all fits to the same criteria. Fitting may
continue as long as enough points remain and the minimum
value of H resulting from the random sampling process is less
than o, which is computed once for each data set.

The two remaining issues in defining MINPRAN are the
calculation of S, the number of random samples required, and
the calculation of F, the threshold used to distinguish good
fits from fits to purely random data.

A. Number of Samples

S, the number of random samples required, may be deter-
mined from a user-specified minimum probability that at least

one sample 1s chosen containing p points from a correct fit.
Here, we generalize techniques for finding S when a single
correct fit is in the data [15], [19], [20], to allow more than one
correct fit (more than one function or surface from which the
data arose). Doing this requires several parameters to be
specified by the user. These parameters, which do not other-
wise influence the algorithm, are the estimated maximum frac-
tion of true outliers, X, (a “true” outlier is a point that does not
belong to any correct fit), the minimum number of points to be
allowed in a fit, m,, and the estimated maximum number of
correct fits, sy Based on these parameters, with N data points,
let b = xy N ] be the maximum number of true outliers and let
M = N — b be the minimum number of points that are inliers to
various fits.

To derive S, suppose the data points arise from ny surfaces,

with m; points, 1 < i < ng, on each surface, where m; > p and

Y, m; = M. Assume for the moment M mod ny =0 and let

m = M/n;. (In general, m = |_M/nf 1) The probability a random
sample of p points is “good”—consists of all points from the

same surface—is simply ¢ = ZZ . C(m;, p)/C(N, p), where

C(m;, p) and C(N, p) are binomial coefficients. It is straight-
forward to show ¢’s minimum, which is the worst case, occurs
when m; = M/ng= m, for all i, so we set g = ny C(m, p)/C(N, p).
The probability at least one sample is “good” in § samples is,

Py=1-(1~ g)°. If a minimum value of P, is specified by the
user, then the minimum number of samples required is

_ log(l - Pg)

. 4
log(1-q) @

In practice, there are several important refinements to this:

1) If M/n; < my, then nyand my are inconsistent. Assuming my
is more significant, reassign ;= M/mg) and m = LMing],

2) In recomputing S to find an additional fit, assuming no
outliers were part of the fit accepted as correct, b stays
constant, ny is decremented, M is reduced by the number
of accepted inliers, and m and g are then recomputed.
The role of my is important here, because if my is small,
then after the initial fit, a small initial outlier percentage
can cause S to become extremely large. For example, if
my=3,p=3,P=099, n=2, x=02, and N = 100,
then b = 20 and, initially, S = 36. If the initial fit has 75
inliers, then the new value of m is 5, and S will be 1,057.
By setting my= 15, after the initial fit m = 15 and $ = 21.

3) If ny is reduced to 0, then set m = max(my, N — b), and
g = C(m, p)IC(N, p).

4) Finally, set a lower bound (= 15) on the minimum num-
ber of samples allowed.

Examples values of S computed from (4) are shown in Ta-
ble I. Several observations are apparent. First, as seen in the
first three rows of the table, low percentages of true outliers
require relatively few samples, even when multiple correct fits
are expected. Second, as the percentage of true outliers in-
creases, the number of samples required increases quickly
(e.g., compare rows 4 and 5). Thus, although we will show
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MINPRAN can find correct fits for large outlier percentages,
the cost of finding them is relatively high. Finally, the effect of
the number of points in a sample, p, is dramatic. For example,
in switching from linear (p = 2, row 6) to planar (p = 3, row 2)
to quadratic fits (p = 6, row 7) the number of samples in-
creases dramatically.

TABLE 1
NUMBER OF SAMPLES REQUIRED FOR VARIOUS PARAMETER V ALUES.
FOR EACH OF THE ENTRIES, N = 50 AND = 10.

Max Sample Outlier Samples

Surfaces Size Fraction Required

ne p X P,=95] P,=.99

3 3 0.1 42 64

2 3 0.1 18 27

2 3 0.3 42 65

1 3 0.3 8 12

1 3 0.6 60 91

2 2 0.1 7 10

2 6 0.1 318 489

The number of samples does not vary significantly with N unless N is quite
small.

B. Randomness Threshold F,

MINPRAN accepts the best fit from § samples as correct if
Fr, i, N) < Fo. Fois a threshold based on the probability Py
that the best fit to N uniformly distributed outliers is less than
Fo. (Intuitively, Py is the probability MINPRAN will halluci-
nate a fit where there is none.) Thus, for a user defined value
of Py (e.g., Py = 0.05) we establish our threshold value F,.

For a given Py, our goal is to find the value F; such that
from a set of points entirely composed of uniformly distributed
outliers

Prob(min H($;. N)< fo) =P

i<jss

or, equivalently,

min
1<j<S,1<i<N

Prob( &)

Flrg, i N) < fo] = B,
To make the analysis feasible, we assume the S fits and their
residuals are independent. Strictly speaking, this assumption is
not correct, since the point set is the same for all fits. It is rea-
sonable for relatively small valuves of S, however, and as we
will see in the experimental results, it makes MINPRAN more
conservative in accepting fits.
Equation (5) is solved using the following steps:

1) For a single fit ¢, with ordered absolute residuals r,;, ...,

r,n and for any given value of Fy, find the probability
that min F(r,;, i, N)> . Call this probability

AN, Fo)-
2) Use AN, Fu) to tind the probability that over S random

samples, min f(r,pj‘i, LNY< Fy.
e

3) For a user specified value of this probability, Py, search
over the values of Fj to find the value satisfying (5).
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B.1. Calculating fiN, o)

Suppose the N residuals to a given fit are each drawn at
random from a uniform distribution in the range [0 ... 1].
(Without loss of generality, for the remainder of this analysis
we assume Z, = 1. To reflect this we refer to the residuals as p;,
and in special cases, f;, rather than r,. We also drop ¢ from the
subscripting.) Let py, ..., py be the residuals in non-decreasing
order. For a given F, our goal is to calculate

(N FRy) = Prob(miin Fpi i, N} > fo].

In order for min F(p;, i, N) > T, we must have Fp;, i, N) > F
]

for each i. Since F increases monotonically with p; for fixed i
(see Lemma 2), there is a unique value, f;, which can be found
by bisection search, such that F(f, i, N) = F. Then, for our

given set of residuals, py, ..., py, F(ps I, N) > F if and only if
pi > fi. Therefore,

SN, Fo) = Prob(¥i, p; > f)).

For any given set of N residuals, in order for p; > f; for all i,
there must be no residuals in the range O ... f;, at most 1 resid-
ual in the range 0 ... f,, at most 2 residuals in the range 0 ... f;,
etc. See Fig. 3. To state these constraints more succinctly, de-
fine fy = 0 and fy,; = 1, and let ¢;, 0 < i < N, denote the number
of residuals in the range (f; ... fix1] . Based on these c; counts,
the constraints become,

i N
Yec;<ifor0<i<Noand Y c;=N. (6
j=0 i=0

Fig. 3. An example set of residuals and f; values for N = 10. The dots represent
the residual values p;, and each f; value is such that Ff;, i, Ny = Fo=0.05. In this
case there are six residuals between 0 and fs, so ps < fo and Fpe, 6, 10) < Fo. On
the other hand, for j # 6, there are fewer than j residuals between 0 and fj, so
pj > fjand F(pj, j, 10) > Fo.

To determine the probability of a random set of residuals
satisfying these constraints, observe that because the residuals
are uniformly distributed, the probability any particular resid-
ual is in the range (f; ... fi,)] is simply Af;, where Af; = i, — f-
(For the remainder of this section we will consider the residu-
als prior to ordering.) Then, because the unordered residuals
are independent, the probability c¢; particular residuals are in
the range f; to /i, 18 (Aﬁ)c'. Based on this, the probability of a

given configuration of residual counts, ¢y, ..., cx 1S
N
N! ¢
———T1(#%)
CO'CI ....CN =0

and, if C is the set of all configurations satisfying (6) , we have

f(Nvfo): 2 i

! '
__.iv_'____;H(Afi)c' .M
((70 vvvvv CN)

colal..entisg
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Thus, based on properties of F, we have transformed the
probability that F is greater than a threshold into an interval
counting problem. The resulting equation can be evaluated in
O(N * time using a dynamic programming algorithm. (See
[31] for details.)

B.2. Finding Fo

Making the simplifying assumption that F is independent for
each sample, the probability each of the S samples has
min F(p;, i, N} > Fo is just (N, Fo)® . Therefore, the desired

probability at least one sample has a minimum less than Fo is

Po=1-(fIN, Fo))’. ®)

Equation (5) can now be solved. Rearranging (8) gives
fN, Fo=(1 - Po)'® . Using the dynamic programming solu-
tion to (7), we build a two-dimensional table of values of
fiN, F,) indexed by N and by a range of values of Fo. For
given N, S, and Py, search row N of this table for the value of
Fo such that AN, Fo) = (1 - Py . More accurate values of
Fo can be found by interpolation. If there are nm entries in this
table, where n and m are the number of values represented for
N and F,, respectively, then the table can be constructed off-
line in time O(nmN °). Here, N represents the maximum num-
ber of data points. On-line, an O(log m) binary search finds the
appropriate value of F, for given values of Py, S, and N.

Since we derived o from Py, the desired probability the
best fit to random data is less than Fj, this threshold prevents
MINPRAN from hallucinating. We may also use our analysis
to demonstrate why MINPRAN can accept fits involving arbi-
trarily low inlier percentages. Given P, N, and S, which de-
pends on P,, we find Fq as described above, and for each i,
1 <i<N, we find s; such that F(s;, i, N) = Fy. As long as a fit
with i inlier residuals (i + p inliers total) has residual bound
r < 5, it may be distinguished from a random fit and therefore
accepted as correct. Table II gives example ‘o and s; values.

TABLE I
VALUES OF 5, (WITH Zy = 1) SUCH THAT (8, 1, N) = o FOR N = 50, Po= 0.05,
Zo= 1.0, AND S = 25 (SO THAT fo=0.000095) OR § = 50 (SO THAT
Fa=0.000045). WHEN Zo # | THESE S;MUST BE SCALED BY Zy

i s;
S=25 §=350
5 0.009 0.008
15 0.102 0.096
25 0.243 0.236
35 0.428 0.416
45 0.661 0.647

IV. ANALYSIS OF MINPRAN

The derivation of F, in the previous section establishes
MINPRAN’s ability to distinguish between good fits to good
data and fits to purely random data. In this section, we analyze
MINPRAN'’s performance when a good fit should be found to
show it should find good fits and nearly the correct number of
inliers. To make this analysis tractable, we break it up into two
steps, showing
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1) for the correct fit, the expected minimum of FGryi i, N)
occurs at nearly the correct number of inliers (see Sec-
tion IV.A), and

2) when the residuals take on their expected values relative
to any fit, the correct fit, ¢, minimizes H(o, N) (see Sec-
tion IV.B).

The former allows MINPRAN to generate the best possible final
least-squares fits, including good estimates of the variance of the
data. While neither of these models the performance of MIN-
PRAN exactly, they are strongly indicative of its behavior. The
first approximates MINPRAN’s behavior when a sample con-
taining all inliers to the correct fit is tested. The second com-
pares criterion function values across all possible fits.

A. Finding (Nearly) the Correct Number of Inliers For the
Correct Fit

We show for the correct fit ¢ when £ inliers are expected,
the minimum of F(¢, N) occurs at almost exactly k inliers. To
do this, we derive the probability that the minimum of the cri-
terion function occurs at i, 1 < { < N. Based on this, we com-
pute the expected number of inliers, and the variance in the
number of inliers. In the derivation, we assume

1) the k expected inlier residuals are Gaussian with zero
mean and standard deviation o, and

2) the N - k expected outlier residuals are uniformly dis-
tributed in the range [0 ... Z]. (Observe that when k in-
liers are expected and the points are independent, the
actual number of points taken from the inlier process
follows a binomial distribution.)

Normalizing so that Z, = 1.0, let ppin(i, 1) describe the prob-
ability density function (pdf) of the criterion function mini-
mum occurring at i inliers, 1 < i <N, and inlier bound, r,
0 < r € 1. Then the probability the minimum occurs at any
given i is

|
p(l) = J.O pmin(i’ r)dr (9)

The expected number of inliers and the variance in the number
of inliers are

E[i]:ii p(i) and Var[i]={ﬁizp(i)}—(E[i])z. )

We derive pn(i, r) by generalizing the derivation of
AN, Fo) in Section IILB. For given values of i and r, let
F "= Fr, i, N)and let fi, ... fy be the unique values such that
Ff i, Ny = F . Given N residuals p,, ..., pw in increasing
order, two different sets of constraints must be satisfied to
produce a minimum of F “ati,r. First, p;>f;, 1 <j<Nand
j#1i, to force Fpy, j, Ny > F " for all j. Second, p; = r = fito
force F(ps, i, Ny = F . These imply there must be / — 1 re-
siduals in the range [O ... r), one residual at r, and N — i re-
siduals in the range (r ... 1].

To derive the probability these constraints are satisfied, let
fo=0and fy,1 = 1, and, as in Section IIL.B, define the interval
counts, ¢, to be the number of residuals in the interval
(; ... fiuu]. The only exception is ¢, which we define as the
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number of residuals in (f_; ... f;) to exclude the location f;= r
from the interval counts. Based on these definitions, the first
set of constraints becomes '

' i1
S, <t,0<t<i-tand Y c; =i-1

j=0 Jj=0

an

! N
Y, <t-iist<Nand Y¢;=N-i.  (12)
J=i J=i
These equations are similar to (6) in Section IILB, and are
illustrated in Fig. 4. The probability of having ¢; points in the
interval (f; ... fi1] is governed by a pdf combining the expected
k Gaussian inliers and the expected N — k uniform outliers,

k V2 _gpet N—k
X)=——7=¢ + — . 13
&%) N Jrno N (13
L o8, o o o | e e | 'y o |
A S S A S |

o0t 1 3 . s s ] s ] 10 10

Fig. 4. A set of residuals that satisfies the constraints to have a minimum of F
at i and r (i = 7). (Each dot represents a residual value, p;.) For each j, p; 2 f;,
andp;=fr=r.

The range of x is assumed to be [0 ... 11.* The inlier pdf and
the outlier pdf are independent and defined over the same
range because they are assumed to arise from different physi-
cal processes. The probability c; particular (independent)
points are, in the interval (fj ... fiul (or (fiy ... fi) for ¢iy) is

simply
St i
Ufj g(u)du} .

Now we are ready to calculate pmi(i, r). Let C; be the set of
all cg, ..., i satisfying (11) and let C, be the set ofall ¢, ..
satisfying (12). Then, by analogy with (7)

N
pmin(i’ r) = 2 [
(conncrp)e G \EO? -5 Cicts Ley,...,cy

(cir-nen)eCy

&lr )1_"1 [j'fn g(u)du:l j ,
=0t

where the 1 in the multinomial coefficient represents choosing
the residual f; = , and g(r) is the density of that residual. This
equation may be evaluated in OV %) time using a dynamic pro-
gramming technique {31].

As discussed above, we use the equation for puin(i, 1) to calcu-
late p(i), Efi], and Varli]. Plots of p(i) are shown in Fig. 5 for
k = 20 and k = 40 expected inliers, when there are 50 data points,
and o= 0.01 and o= 0.05. A third curve in each plot shows the
binomial probability of i actual inliers when k are expected, rep-
resenting the ideal model for p(). For the two values of & when
k = 20, E[i] is 19.95 and 21.58, respectively, and the standard

(14)

- CN

(15)

4. Strictly speaking, placing an upper bound of 1 on x violates the assumption
of having Gaussian inliers since the Gaussian is unbounded. Practically, how-
ever, this makes litfle difference since o'is presumably small relative to Zo.
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deviation (Var{i])'"” is 3.58 and 4.30 points. The peak in the
curves shifts to the right as ¢ increases because the inlier bound
is larger and more outliers are likely to fall inside the bound. For
the two values of o when k = 40, E[i] is 39.3 for both, and
(Var[iD)'? is 3.04 and 3.35. These values predict a slight bias
toward fewer inliers found by MINPRAN when there is a large
percentage of expected inliers. Overall, the results show that
when testing the correct fit, MINPRAN should find nearly the
correct number of inliers for a wide range of values of o and
expected number of inliers. These results are confirmed by our
experimental results which show a close match between the ex-
pected number of inliers predicted from (10) and the actual
number of inliers found by MINPRAN.

Sigma = 0.01 ——
Sigma = 0.05 ~v-
Binomial -®-

Probability of minimum

10 15 20 25 30 35 40 45 50
Number of inliers

a

0.12 Sigma = 0.01 +—
Sigma = 0.08 o
Binominl -#-

Frobability of minime

15 20 25

b

Fig. 5. Two sets of plots of p(i) (9) for N = 50 points, and ¢ = 0.01, 0.05.
Plot (a) shows k = 20 expected inliers, while plot (b) shows k = 40 expected
inliers. The third plot shows the binomial probability that i is the actual num-
ber of inliers when k = 20 inliers are expected.

B. The Minimum of 7 Based on the Expected Residuals

To predict MINPRAN’s behavior when it compares fits to
minimize H(¢, N), our second analysis technique derives the
expected residuals to any given fit, evaluates H(@, N) for these
expected residuals, and searches for the minimum of H across
all possible fits. We have applied this same technique to
evaluating a variety of robust estimators used in computer vi-
sion. Details of the technique and results are given in [28], so
we only present a summary here.

Given a model of the data in two-dimensions, we derive a
density A(x, z) of the data points in R* and use this to calculate
the expected residuals relative to each fit. Density h(x, 2)
combines models of the inlier process(es) of the curve(s) gen-
erating the data (including models of the density of points on
each curve and the noise in each point’s z value) and the out-
lier process. For any hypothesized fit ¢(x) and residual r, we
calculate F(r | ¢), the cumulative distribution of r relative to o,
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by integrating h(x, z) over the region @(x) + r; we calculate
fir | ¢), the density of r relative to ¢, as the derivative of
F(r | ¢). We then derive the conditional expected absolute re-
siduals, e,;, i £ i < N, from F(r | ¢) and fir | ¢) by applying
standard order statistics techniques [7].

For each possible fit ¢, we define AEV(¢4, N)=
min; F (€4, &, N). This is the “approximate expected value”

of H(¢, N), i.e. the value of the randomness criterion when the

residuals take on their expected values relative to ¢. Finally,
we search (numerically) over the range of possible fits to find

min, AEV(¢, N). The fit producing the minimum approximates
the expected best fit to data generated from the curve and out-
lier models.

Using this technique, we obtain both good and bad results.
When a single curve, f, generates the data and the remaining
points are random outliers, the AEV is minimized when ¢ = (3.
Intuitively, this occurs simply because the correct fit produces
the smallest expected residuals, and therefore, the smallest
criterion values. Combined with our analysis in Section IV.A,
this shows that when a single curve generates the good data
MINPRAN should find the correct fit, including approxi-
mately the correct set of inliers. With this inlier set,
MINPRAN’s final least-squares fit should produce accurate fit
parameters and good estimates of the noise in the data.

Unfortunately, when multiple curves generate the data, for
example near a depth or orientation discontinuity in a range
image, the minimum AEV usually occurs at a fit that “‘bridges”
the discontinuity to intersect both curves, and whose inlier
bound expands to inciude nearly all the points from both
curves. These “bridging fit” errors, which are characteristic of
many existing robust estimators used in vision {28], occur in
MINPRAN for a wide range of discontinuity magnitudes [29].

In Section VII, where we discuss applying MINPRAN to
range data, we introduce two simple techniques that avoid most
bridging fit errors. First, however, we describe simulation results
confirming our analysis of MINPRAN and comparing it to LMS,
and then, as a preliminary to applying MINPRAN, we generalize
its outlier model to nonuniform outlier distributions.

V. SIMULATION RESULTS

In order to confirm several of MINPRAN’s properties—it
avoids hallucinating, it finds good fits for a wide range of ex-
pected inlier percentages, and it estimates more accurate fits
than least median of squares (LMS)—we analyze its ability to
fit planar surfaces, z = @y + a;x + a,y, to synthetic range data.
See Fig. 6 for a preliminary result.

In the first set of experiments all of the data points are uni-
formly distributed outliers. Using Py = 0.1 (corresponding to a
desired 10% probability of accepting a fit to random data; see
Section 1I1.B), MINPRAN accepted a random fit as correct
(hallucinated) in only 1.6% of 2500 test data sets. (These re-
sults show the independence assumption in Section IILB is
conservative since it leads to overestimating the probability
that the minimum value of F is less than o, and therefore
leads to a lower value of f;,.) Other robust techniques, includ-

‘ing LMS, always find a single fit, even when the data are
purely random.

a b

Fig. 6. Examplc experimental result on the image shown in Fig. la. Plot (a)
shows the original data and plot (b) shows the reconstructed set of points
MINPRAN labeled as inliers. Of the 144 data points, S8 were generated from
a planar surface; MINPRAN’s best fit included 56 inliers.

In the second set of experiments, a planar surface generates
points, with expected inlier percentages of 20%, 25%, ...,
90%; the remaining points being outliers. In each test, 100 data
points are generated, and the sampling parameters are
P, =099, n,= 1, and xo = p. — 0.1, where p, is the expected
fraction of outliers. The depth and noise parameters are
Zy= 100 and o= 1.0. 2,500 tests were run for each inlier per-
centage. The results are summarized in Fig. 7.
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Fig. 7. Summary of experimental results in finding a single fit when
k =20, 25, ..., 90 inliers are expected out of 100 points. Plot (a) shows the
average number of inliers found by MINPRAN along with the number of
inliers predicted using the techniques of Section IV.A. Plot (b) shows the
average estimated value of the standard deviation of the noise in the data.
Plots (c) and (d) show the average parameter errors for MINPRAN and LMS
relative to the least sum of squares fits to the known inliers for the data sets.

Fig. 7a shows that the average number of inliers closely
matches predictions made using the technique of Section IV.A.
The average is slightly higher than predicted for small expected
inlier percentages because when the actual data contains fewer
than the expected number of inliers, there is a greater chance the
fit will be missed, either during the random sampling process or
by failing the randomness threshold. This results in a bias toward
more inliers in the fits accepted as correct. As evidence for this,
acceptable fits were found in 88% of the data sets for k = 20, in
94% for k =25, and in 100% for k = 30 and higher.
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Fig. 7b shows the average estimated value of o, the standard
deviation of the noise in the data. MINPRAN underestimates &
by about 5%, on average. This is because, using our outlier
model, some of MINPRAN’s inliers may be true outliers
closer to the fit than the good points having the largest residu-
als, and because, conversely, a small number good points
having the largest residuals may be outside the inlier bound.
After MINPRAN’s least-squares fit, we correct for missing the
good points with the largest residuals by gathering all points
within + 30 of the fit. Applying a second least-squares fit to all
gathered points corrects for underestimating o.

Figs. 7c and 7d plot the average errors in the fit parameters
for MINPRAN and LMS as a function of the expected number
of inliers. Plots are shown for the intercept parameter, ao, and
one of the slope parameters, a;. The errors are the absolute dif-
ferences between the estimated parameters and the parameters of
the least sum of squares fit to the known inliers. These results
show MINPRAN finds good fits for a wide range of inliers, and
MINPRAN finds substantially better fits than LMS.

VI. NONUNIFORM OQUTLIER DISTRIBUTIONS

We derived MINPRAN’s criterion function, H, by assum-
ing the outliers are drawn from a uniform distribution over the
depth range. In practice, however, sensor geometry may intro-
duce bias in the outliers’ depth values. For example, triangula-
tion-based sensors, such as stereo cameras or structured-light
range finders, measure the disparity, d, between point positions
in multiple “viewpoints,” and convert this disparity to depth, z,
using a calibration model. Often, z o 1/d. Empirically, we have
found the outliers in disparity to be approximately uniformly
distributed, implying the density of outliers in z is proportional
to 1/ (using standard techniques to transform densities [18]).
This violation of our uniform outlier model, which arises when
we triangulate to convert the measured values, d, to the desired
values, z, can be handled in two ways. The first is to reconstruct
in disparity rather than in depth. This is reasonable because the
1/z transform biases the noise in the data as well as the outliers.
The second is to modify the criterion function to handle nonuni-
form outlier distributions. We show how to do the second now.

Looking back at (1) which defines JF{(r, k, N) and forms the
basis of .7-((¢, N), the value r/Z, in the binomial distribution is
the probability a random outlier could fall within the inlier
band around a fit ¢. To handie nonuniform outlier distribu-
tions, we replace r/Z, by the probability, P(r | ¢), that an out-
lier could fall within the region defined by ¢ = r. We refer to
P.(r 1 ¢) as the “residual probability.” P.(r | ¢) is the integral of
the outlier density over the region bounded by ¢ + r (the do-
main of the data and the depth range). In general, when the
outlier density varies across the region, this integral can be
difficult to evaluate.

One approximation to P(@, r), based on assuming the out-
lier density varies slowly within ¢ + r, is to integrate the outlier
density at the data domain’s center. Specifically, for data taken
from an image, let (x., y.) be the data’s center of mass, let
Ze = ¥(x., Yeo), and let p(z | x,, ¥.) be the outlier density at
(%, ¥). Then, we approximate P,(¢, r) by
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2 +r

ZC_rpz(zlxc, yc)dz.

As an example, when p,(z | x,, y.) = al? (ais a normalizing
constant), the approximation yields

p.(r|9) =

2ar

2 2
-7

In this example, calculating the residual probabilities is only
slightly more expensive than calculating the residuals
themselves.

The residual probability P,(r | ¢) is the cumulative distribu-
tion of r given ¢ (based on the outlier density); hence, it is
itself uniformly distributed ({24}, p. 141). Thus, after replacing
residuals by residual probabilities in (1), the rest of MIN-
PRAN is unchanged. For each fit, MINPRAN caiculates and
sorts the residual probabilities for each of the N fit residuals
(for a single fit this ordering is actually the same as the order-
ing of the residuals); it then saves, for each i, the fit with the
smallest residual probability; and finally, it evaluates F for
each of these N retained residual probabilities, choosing the fit
associated with the minimum as the best fit. In deciding
whether or not the best fit is random, MINPRAN uses the
same threshold, F, derived for the uniform distribution, since
in Fy’s derivation the residuals are essentially residual prob-
abilities.

We have, therefore, generalized MINPRAN to arbitrary
outlier distributions. Except for calculating P(¢, r), which may
need to be approximated to compute it efficiently, the gener-
alization is straightforward.

VII. APPLICATION TO RANGE DATA: MINPRAN2

Having defined MINPRAN and studied its properties both
theoretically and using simulated data, we now apply it to
range data taken from complicated scenes, fitting surface
patches, eliminating outliers, and smoothing inliers. As dem-
onstrated in Figs. 10 and 11, these data may contain multiple
overlapping surfaces, numerous discontinuities which lead to
frequent outliers, and regions, which due to occlusions or il-
lumination conditions, contain only outliers. Thus, these data
exhibit the complexities demonstrated in Section I.

We assume the data form a range image, with each pixel
containing either a depth measurement or a special value indi-
cating no measurement is available. We apply MINPRAN to
each of a series of regularly spaced, overlapping image re-
gions, by first extracting a set of points from the depth meas-
urements in each region, and then applying the algorithm to
each point set. The regions overlap because large regions are
required to obtain reasonably accurate fits and the resulting fits
decrease in accuracy toward region boundaries [17].

A. The Bridging Fits Problem

To apply MINPRAN successfully, we need to address the
bridging fits problem, MINPRAN’s tendency to bridge disconti-
nuities and include points from multiple surfaces as inliers to its
best fit. We do so using two complementary solutions:



934

1) Within each individual region, to avoid selecting a
bridging fit, the “split-search” technique finds both the
single best fit to the data and two good disjoint fits. It
then uses a modified randomness criterion to choose
between the single fit and the pair of fits, generally pre-
ferring the pair of fits only when the data arise from mul-
tiple surfaces.

2) To eliminate bridging fits after applying MINPRAN to
all regions, the “final randomness test” identifies the best
fit to each point, removes each point from the inlier set of
any fit that is inconsistent with its best fit, and reevaluates
the randomness of each fit based on its remaining inliers.
It eliminates any fits that fail their original randomness
threshold, Fo.

The final randomness test successfully eliminates a bridging
fit when there are correct fits in neighboring regions. It there-
fore eliminates most bridging fits at isolated depth and orien-
tation discontinuities, failing on depth discontinuities only
when the discontinuity magnitude is less than 40 [32]. It can
not, however, eliminate bridging fits arising from overlapping
surfaces (see Fig. 1c) that extend across multiple regions (such
as seen in Fig. 10). Fortunately, when the overlapping surfaces
are separated in depth by at least 50, split-search generally
estimates two correct fits, one for each surface. Split-search,
however, is less sensitive to isolated discontinuities than the
final randomness test, tending to choose bridging fits when the
step height is less than 80. (See [32] for complete analysis.)
Thus, split-search and the final randomness test effectively
complement each other, and together they form the final ver-
sion of MINPRAN, which we call MINPRAN2. We sketch the
details of these techniques below.

A.1. Split-Search

For the split-search technique, we first describe the modi-
fied criterion function. In a given region, let ¢, be the fit
minimizing H, with k;, inliers and an inlier bound of r,, and let
¢, and ¢, be a pair of disjoint fits, with k; and k;, inliers and
residual bounds r; and r,. (See Fig. 8 for a two-dimensional
example.) Since H is minimized by @, rather than either ¢, or
¢, individually, we want to compare ¢, and ¢, together to ¢.

Fig. 8. The inlier bounds for the bridging fit, ¢s(x), and the two correct fits for
a step edge, 1(x) and ¢z(x). The dotted lines show the inlier bounds.
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The probability at least k; points could randomly be within
¢, + r, and at least k;, points could randomly be within ¢, + r, is

N ik i-j j N-i
' n n ntn
2 2 ! 1 e 1_ ’(16)
‘kr"kzj'kz (i= ) (N“’ N Z Z, Zy

where i represents the number of points in both regions, j rep-
resents the points in ¢, + r,, and i — j represents the points in
¢y = ry. It is easy to show this is less than

N-i
Y r'+r2) = F(r,+n, ky +ky, N),

il (Nj[r] +r2]i(1_
i=k;+k, J \ 0 0
(17)

which is the probability there are at least k; + &, points in the
combined regions.® Then, based on the probability of random-
ness, we would like to have MINPRAN choose the two correct
fits instead of the bridging fit if

Fr1+ ry, ki + kg, N) < JF(rp, ki, N). (18)

Equation (8 allows us to compare a single fit to a pair of
disjoint fits. To actually find the disjoint fits to make this com-
parison, we must be careful to avoid a combinatorial explosion
in the search. Our heuristic technique uses the following sim-
ple observation: if there are two surfaces in a region, then at
least one of them contains less than half of the points. Based
on this, we modify MINPRAN to save two fits from its exami-
nation of § fits: the single best fit as before, and the best fit
containing fewer than half of the data. MINPRAN then tempo-
rarily assumes the latter is correct, gathers and marks its in-
liers, and repeats the search (as described in Section III),
finding the single best fit in the remaining data. (For example,
when one half of the step edge is found initially, the second
half will be found in the second search.) These two fits may
then be compared to the initial best fit using (18) . This tech-
nique adds relatively little to the computation time since the
second search involves significantly fewer points and samples.

A.2. The Final Randomness Test

The final randomness test depends on the overlap between
image regions in which MINPRAN estimates fits, and is based
on several observations. First, when a bridging fit is found in
one region, its inliers may also be part of correct fits in over-
lapping regions, as shown in Fig. 9. Next, because a bridging
fit usually incorporates all inliers within its region from both
surfaces, it produces erroneous fit parameters and overesti-
mates the variance in the data. The fit parameter errors shift
the estimated z values of the inliers away from their correct
values. Finally, a point should not be considered an inlier to
two fits from different regions if they produce significantly
different estimates of its final z value. In this case, the fit pro-
ducing the minimum variance estimate should determine the z
value, and the point should not be an inlier to the other fit.

5. Depending on the values of k), r1, k2, and ry, F(r1 + r2, ki + k2, N) may be
a gross overestimate of (16). Since we will force nonrandomness conditions
on the individual fits, however, in practice the difference between the two is
relatively insignificant.
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Fig. 9. Example of a bridging fit, ¢, for a step edge in one region, R;, and
comect fits, ¢ and ¢, in overlapping regions, R| and Ri. The dashed lines
show the inlier bounds.

Based on these observations, we say a point p; is a “true in-
lier” to fit ¢ if ¢ produced the minimum variance z estimate at
p; or if ¢ is “consistent” with the fit that produced the mini-
mum variance estimate. Consistency depends on both

1) ¢’s z estimate being within the uncertainty range of the
best estimate, and

2) ¢'s estimate of the variance in the data being within the
2 uncertainty range of the best estimate.

When there are correct fits in overlapping regions, bridging
fits will keep few true inliers.

After determining the true inliers to each fit, the final ran-
domness test re-evaluates the criterion function for each fit
based only on its true inliers. Suppose fit ¢ has k true inliers,
suppose the largest absolute residual of these k points relative
to ¢ is r, and let Fy be the original randomness threshold in ¢’s
image region. Then, if F{(r, k, N) > Fo, fit ¢ is eliminated.

B. Experimental Results

In its present implementation, MINPRAN2 fits planar
patches of the form z = gy + @, + a,y to range data acquired
using a structured light range finder [22]. It outputs both the
reconstructed data points and the surface patches. Each data
point considered a true inlier to at least one surviving fit is
output, with its final z value taken as the weighted average of
the z estimates made by the fits to which it is considered an
inlier. The weight is inversely proportional to the fit’s uncer-
tainty at the point. For each surface, both the fit parameters
and a rectangle bounding the image coordinates of its true in-
liers are output.

Two representative results on range images of complicated
scenes are shown in Figs. 10 and 11. Each figure shows an inten-
sity image of the scene, color images of the range data before and
after reconstruction, and three-dimensional views of the data, the
reconstructed data, and the surface patches. (The range data and
results are shown as disparity values, emphasizing the uniformity
of disparity outliers. We also reconstruct using disparities to dem-

6. We use F instead of H, which is the minimum of F over all numbers of
inliers and inlier bounds, because the number of inliers is fixed at k.
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onstrate the first method of handling nonuniform outlier distribu-
tions discussed in Section VI.) The bright rectangular regions in
the center of each scene intensity image show the illumination
window of the sensor. Outside this region the data are entirely
random. We left these regions uncropped to demonstrate MIN-
PRAN’s ability to ignore pusely random data. (Due to sensor ge-
ometry, the depth range shifts from the top to the bottom of the
range images, moving from nearer (red) at the top to farther at the
bottom; hence the shift in the colored depth values from red at the
top to blue at the bottom.) For the results presented,
MINPRAN? fit planar patches in 10 X 10 image regions spaced by
5 pixels in each dimension. It required at most 40 seconds on a
Sparc-10 for each of these images.

The most challenging part of Fig. 10 is the area covered by the
racquetball racket’s strings. Through these strings, points from the
background, the baseball glove, and a racquetball all appear, as
well as several outliers (see the red points in the three-dimensional
view of the string area). Using the split-search technique, MIN-
PRAN2 was able to fit multiple surfaces in the regions within this
area, with one fit including points from the strings, and at least one
other fit including points from the partially occluded surface. Al-
though they do not appear in the plot of the surface patches, MIN-
PRAN?2 fit patches to points from two different racquetballs. Near
where the racket leaned on the glove, one or two fits bridging
points from the racket strings and the glove survived the final ran-
domness test. MINPRAN?2 eliminated nearly all outliers in the area
covered by the strings. Finally, several of the surface orientations
appear to be inaccurate, either due to the inclusion of one or two
outliers, or due to having a small number of inliers.

The wires range image in Fig. 11 challenges MINPRAN2’s

ability to ignore regions where there are only bad data. The wires
near the bottom of the bright region in the scene intensity image
are actually outside the illumination range of the sensor, even
though they are in the camera’s projection of the illuminated re-
gion. Thus, only bad data appear in these regions. As is obvious
from both the color images and the 3D views of the reconstructed
data, MINPRAN? identified all these points as outliers and elimi-
nated them. Most of the wire data was cleanly reconstructed, al-
though a few isolated errors remained and some sections of the
wires containing too few points were missed. In the figure, the
surface patches occasionally appear cluttered, a few orientations
are inaccurate, and, on the bottom right of the image, there is an
outright error. The clutter is mostly due to the overlap of the wires
and the power box behind the wires. As with the sports equipment,
fits with inaccurate orientations either have only a few inliers or
include one or two outliers. Finally, the erroneous fit is a surface
bridging the foreground and a small number of distant outliers.
MINPRAN? tolerates this error because it has no notion of the
distribution of points along a surface.
To summarize, these results (and others not shown) demonstrate
MINPRAN2’s ability to effectively fit surface patches and recon-
struct range data taken from complicated scenes. MINPRAN2
eliminated most outliers, avoided hallucinating fits, and recon-
structed multiple overlapping fits where neces sary. On the nega-
tive side, it occasionally obtained fits that included points from
multiple surfaces or included points from a surface and one or
two outliers.
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Fig. 10. Results for the “sports equipment.” Top left: gray level image showing the illumination arca. Top center: color image of the range (disparity) data. Top
right: color image of the reconstructed inliers. Bottom left: colored, three-dimensional view of the original data. Bottom center: colored, three-dimensional view
fo the reconstructed inliers. Bottom right: three-dimensional shaded view of the surface patches.

Fig. 11. Results for the “wires.” Top left: gray level image showing the illumination area. Top center: color image of the range data. Top right: color image of

the reconstructed inliers. Bottom left: three-dimensional view of the original data. Bottom center: three-dimensional view of the reconstructed inliers. Bottom
right: three-dimensional shaded view of the surface patches.
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VIII. SUMMARY AND DISCUSSION

In this paper we have derived a new robust estimator,
MINPRAN, analyzed its properties both theoretically and ex-
perimentally, and applied it to reconstructing surfaces and
eliminating outliers in complicated range data. MINPRAN is
the first technique that reliably tolerates more than 50% out-
liers without assuming a known inlier bound; it only assumes
the outliers are uniformly distributed within the dynamic range
of the sensor. Since assumptions about the outlier data are re-
quired to surpass the 50% breakdown point, the uniform dis-
tribution assumption is, in a sense, the minimal possible as-
sumption. Further, when the outliers are nonuniform—for ex-
ample when there are biases in the depth values produced by a
range sensor, we have shown how to adjust MINPRAN’s ran-
domness criterion function accordingly.

MINPRAN has several novel features and compares fa-
vorably to least median of squares (LMS), the robust estimator
that achieves the highest breakdown point of the estimators
that do not assume a known noise model for the good data.
MINPRAN generally does not “hallucinate” fits when there
are none in the data, and it estimates good fits, including ap-
proximately the correct number of inliers, for both low and
high inlier percentages. By contrast, LMS always estimates a
single fit involving 50% of the data points, regardless of the
true outlier percentage. The cost of MINPRAN’s flexibility is
a moderate increase in its computational complexity relative to
LMS, (O(SN log N + N} vs. O(SN log N)).

In applying MINPRAN to range data, we introduced both the
split-search technique and final randomness test to avoid making
bridging fit errors. The resulting estimator, MINPRAN?2, reliably
eliminates outliers, does not hallucinate, and estimates multiple
surface patches where appropriate. Unfortunately, it also occa-
sionally retains sutfaces bridging small magnitude discontinuities.

Thus, although the main contribution of this paper is the
theoretical development of MINPRAN, MINPRAN2 may be
used in practical applications. While it only estimates local
surface patches, meaning it is not a complete reconstruction
technique, it tolerates higher outlier percentages than other
techniques and it can estimate fits to data from multiple, over-
lapping surfaces. MINPRAN2 could therefore be used to seed
surfaces in surface growing algorithms [4], [5], [6], [13], or it
could be used to “clean” the data for global reconstruction
algorithms, especially recent ones that include overlapping
surfaces in their optimization model [14]. These possibilities
are being explored as part of ongoing work.
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