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Abstract

We develop and prove correct an algorithm that en-
ables active contours to correctly represent regions that
undergo topology changes as the contours evolve. Us-
ing the incremental motion typical of active contours,
we introduce the concept of motion regions to deter-
mine the new topology. When the topology changes
(e.g. by contours intersecting), the motion regions are
used to delete and and reconnect the contours to ac-
curately describe the new region. Contour intersec-
tions can also occur without topology changes. These
are also appropriately handled. The algorithm to per-
form this task is proved correct in a general framework
that makes few assumptions about the contour repre-
sentation. We describe how this algorithm is applied
to a polygonal representation of the contours, and ar-
gue that it does not significantly affect execution time.
Finally, this polygonal implementation is used in sur-
face extraction and phytoplankton classification.

1 Introduction

Since their introduction [5], active contour tech-
niques have been used in many applications, in-
cluding segmentation [3, 13], medical image analy-
sis [2, 5, 6, 10], and tracking [1, 4]. The fundamen-
tal advantage of active contours is that constraints
derived from image measurements and constraints de-
rived from contour shape considerations may be com-
bined in a single energy functional, which is mini-
mized with respect to parameters describing the con-
tour location. Contour connectivity is automatically
enforced.

Initially, active contour techniques used fixed
parameterizations, with energy penalties for size
changes. With the addition of dynamic reparame-
terizations, expansion/contraction forces, and region-
based energy terms ( “active regions”), closed contours
initialized in small regions can expand dramatically to
describe regions of arbitrary shapes and sizes.

New problems arise when active contours are al-

lowed to grow arbitrarily beyond an initial shape and
size: contour self-intersections and changes in region
topology. Topologically, the simplest form of a closed
contour is a single, non-intersecting cycle, which en-
closes a region homeomorphic to a disk. As a contour
expands, however, it may eventually wrap around an
image structure, with opposite sides of the contour ap-
proaching each other and eventually intersecting. Fig-
ure 1 illustrates this. Such intersections indicate an in-
consistency in the boundary representation. In many
cases, though not all, these intersections indicate a
change in region topology. In the example shown, the
contour should be split into two cycles, and the re-
gion should become homeomorphic to a ring. Han-
dling problems associated with self-intersections and
topology changes is crucial to expanding the general
utility of active region and closed active contour tech-
niques.

Several methods have been introduced to address
the self-intersection and topology problems. Some
have artificially avoided self-intersections, either ex-
plicitly by detecting and preventing motions that
cause an intersection, or implicitly by adding a repul-
sive force between segments of the contour [3]. These
methods disallow changes in region topology, which
means topology is fixed a priori and information avail-
able to dynamically discover the topology through
contour evolution is suppressed.

Two current methods do allow topology changes.
One represents each boundary contour as a cycle of
polygonal edges whose vertices are restricted to the
edges of the cells in a simplical decomposition of the
image plane [9, 10]. When boundary contours inter-
sect, the underlying cells are used to determine the
new topology and to correct the polygonal represen-
tation as necessary. There are three drawbacks to this
approach. First, the method assumes that contour in-
tersections occur at two points, even though it is pos-
sible for intersections to occur at a single point (Fig-



Figure 1: A result from surface extraction (Section 4). The contour is initialized to form a seed region. The contour, and
hence the region, grows to cover the whole face of the nut. At a certain point, the contour self-intersects due to a topology
change. The contour should then be split into two contours, after which region growth should continue to convergence.

ure 2(f)). Second, the underlying grid representation
fundamentally changes the active contour implemen-
tation. It would be preferable to have a technique that
could “plug-in” to other methods. Third, the bound-
ary polygons are constrained to lie on a grid. The
resolution of the representation is therefore limited by
the resolution of the grid. The other method that al-
lows topology changes represents the boundary of a re-
gion as the level set of an higher-order function [7, 12].
Here the topology of the level set can change without
the topology of the higher-order function changing.
This technique, however, requires careful formulation
of a speed function governing the boundary’s motion,
maintains an implicit boundary representation which
is less intuitive to manipulate than an explicit repre-
sentation, and is grid based, thus incurring the two for-
mer two disadvantages above. A more detailed com-
parison of these techniques and the one presented here
will be provided in a long version of this paper.

This paper presents a new, provably-correct tech-
nique to fix contour intersections and detect topology
changes. The technique assumes a general boundary
representation, which is simply a set of boundary con-
tours (not necessarily polygons), and it places only
a few constraints on what types of contour motions
can and cannot occur. The constraints are easily met
in practice, and do not detract from its generality
and power. The technique is simple, computation-
ally efficient, and easily incorporated into current im-
plementations. One implementation is demonstrated
using polygonal boundary contours. This is used in
surface extraction and detection of phytoplankton in
phase contrast microscopy images, demonstrating the
power of using an active contour technique with self-
correcting contours and topology.

2 Solution Overview

Active contours and active regions change shape in
response to the gradient of an energy functional. This
gradient is a function of the contour parameters, and

hence, all the activity is along the boundary. Topol-
ogy, by contrast, is a property of a region. From a
topological viewpoint, curves are only used as a con-
venient representation of the region boundary and, by
extension, of the region itself. Solving the contour in-
tersection and topology problems requires a shift in
thinking to focus on the region itself. As a result,
our technique for correcting boundary contour inter-
sections and for detecting topological changes depends
on reasoning about region properties. While minimiz-
ing the energy functional is treated as primary, the
changes in the boundary contour induced by the min-
imization are best viewed as changes to the region.
Boundary contours in conflict with changes to the re-
gion interior or exterior are detected and deleted. This
reflects the subservient role of the contours.

The technique described below is inductive in na-
ture. It starts from a topologically correct, non-
intersecting boundary representation. It incremen-
tally moves the boundaries in minimizing the en-
ergy functional, detecting and correcting errors in the
boundary representation. Nothing is assumed about
the energy functional or the smoothness of the bound-
ary contour. Therefore, some errors the algorithm de-
tects and corrects result from motions that are unlikely
to occur for some energy functionals. Importantly,
however, the technique is made no more complicated
by addressing these problems and therefore there is no
cost to the generality of the algorithm.

Most incremental changes involve either the ad-
dition of new areas to the region or subtraction of
current areas (Figures 2(a) and 2(b)). Some involve
both (Figure 2(c)). Occasionally, contour intersections
cause changes in topology (Figures 2(d) and 2(e)),
but not always (Figure 2(f)). In addition, changes
in topology are not always accompanied by contour
intersections as shown in Figure 2(g). Here, the hole
boundary passes completely through itself, eliminat-
ing the hole.
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Figure 2: These figures illustrate the different types of
boundary movements that could occur. The bold solid line
and the dashed line give the old and new positions (respec-
tively) of the moving curve portion. The thin solid lines
are boundary curve portions that have not moved. The
dark grey indicates a region that should be added to the
current region, while the light grey should be subtracted.
The medium grey is part of the current region unaffected
by the motion.

As these examples show, each time a boundary
moves there are two problems to be addressed. The
first problem is determining if any boundary con-
tours intersect and if so, removing the intersection in
a way that is consistent with the new region. The
second problem is detecting if a change in topology
has occurred and if so, determining the new topol-
ogy and taking appropriate actions. Detecting topol-
ogy changes is particularly important when there are
topological constraints placed on the regions (e.g. the
region must have a face topology [8]).

The following three sections address the first prob-
lem. The second problem is closely tied to determining
connectivity and is examined in Section 2.4.

2.1 Notation

All the regions and curves discussed in this paper
are subsets of 2. We assume the standard topology
on R? [7].

Let S C R®2. Then S is the closure of S, $ is the
interior of S, and S¢ is the complement of S in R2.
A neighborhood of a point x is an open set contain-
ing x. A point z is a limit point of a set S if every
neighborhood of x has a point other than z in S. The
boundary of a set S is denoted 65 and can be defined
by

S = {z € S:V nbhoods N of z,
NNnS#@and NNS #0}. (1)

Clearly, a closed set contains its boundary while an
open set does not.

A curve ¢ in R? is a continuous map c : [0,1] — R2.
Abusing notation, we will also use ¢ to denote the set
{c(t) : t € [0,1]} (which is the image of ¢). A curve
c is closed if ¢(0) = ¢(1). Otherwise, it is open and
c(0) and c(1) are its end-points. A closed curve has
no end-points. A curve c is simple if it does not self-
intersect. Boundary curves are oriented so that the
interior of the region lies to the left, where “the left”
of a curve c at a differentiable point c(to) is the left
of the tangent direction at that point. The left at a
non-differentiable point ¢(t;) is defined in terms of the
left of the points immediately before and after c(t;).

A portion of a curve c(¢), t € [0,1], is c(s) with
s € [a,b], where 0 < a < b < 1. Clearly a portion of
a curve is itself a curve, and can be reparameterized
such that the parameter is in [0, 1].

Two curves ¢ and d (not necessarily distinct) touch
at a point z = ¢(i) = d(j) if there exists a line through
x separating ¢ and d in a neighborhood N of z. That
is, there exists a line through z such that cN N lies on
or to the left of the line and dNN lies on or to the right
of the line. If no such line exists, then the curves cross
at x, and z is called a crossing point on ¢ and on d.
Note that under this definition, two curves overlapping
are considered to be touching at each point of overlap.

A curve c(t) is oriented by its parameter ¢: from
a point on the curve, we can “travel” backward (de-
creasing t) or forward (increasing t). Starting at a
crossing point x on a curve, the next crossing point
is found by traveling forward from x and the previous
crossing point is found by traveling backward.

2.2 A correct boundary representation

We now define how the motion of the boundary
contours changes the region. Define a region R as the
closure of a bounded, open subset of ®2. The region
will be represented by its boundary 6R. From the na-
ture of R, it follows that R is a set of closed curves
¢;- Without loss of generality (WLOG), assume each
curve is parameterized over [0, 1]. Clearly, the bound-
ary curves do not cross. We impose a further condition



Figure 3: The shaded area R is the closure of a connected,
open subset of ®2. The solid lines form the set of boundary
curves 6R. The boundary curves are oriented such that the
interior of the region lies to the left of each curve.

on R that its boundary curves do not touch. While
not strictly necessary, this condition is easily met in
practice and simplifies much of the discussion below.
The boundary curves are assumed to be oriented such
that R lies on the left of each curve (Figure 3). Abus-
ing notation, JR is used to refer to the boundary both
as a set of points and as a set of curves.

Formally, movement of the boundaries occurs when
a portion ¢, of a boundary curve is modified (moved)
to become ¢/ . In the most common case, illustrated
in Figures 4(a) and 4(b), ¢, and c), define a single
region which we call the motion region. The motion
region could be additive, causing the region to grow
(Figure 4(a)), or it could be subtractive, causing the
region to shrink (Figure 4(b)). Sometimes, the motion
of a single curve portion can result in multiple regions
(Figure 4(c)). This case can be regarded as the si-
multaneous movement of two curve portions resulting
in two distinct motion regions, one additive and one
subtractive.

When arbitrary movement is permitted, more com-
plicated cases can arise where the effect of the motion
is not well-defined. In Figure 4(d) for example, it is
not clear whether the striped region should or should
not be part of the new region. For this reason, one con-
straint that we place on the motion is that the motion
regions are well-defined. A second constraint is that
the additive and subtractive regions are disjoint—if
they were not, then it is not clear if the points in their
intersection belong to the new region. For a motion
region defined by c,, and ¢/, to satisfy the first con-
straint, it is sufficient that (1) c}, has the same end-
points as ¢p,; (2) c), does not self-intersect; (3) cl,
does not intersect c,, except at the end points; and
(4) ¢}, does not touch 6R (they may cross, however,
as illustrated in Figures 2(e) and 2(d)).

Constraint (3) avoids the case illustrated in Fig-
ure 4(d). It does not prevent the case illustrated in
Figure 4(c) because, as mentioned above, this case can

(d)

Figure 4: In all the diagrams above, the dark grey shows
an additive motion region and the light grey a subtractive
motion region. The medium grey area is part of R. The
dashed line is ¢, while the solid line between the two dots
iS Cpy.

be reformulated as the simultaneous movement of two
independent curve portions. Constraint (4) maintains
the restriction that the boundary curves do not touch.

These conditions are sufficient to make the motion
regions well defined, but they are not necessary. Any
set of conditions that clearly define the motion regions
and ensure that the additive and subtractive regions
do not intersect will also be sufficient. We present the
four conditions above because they can be easily sat-
isfied by any polygonal implementation that moves a
single vertex at a time, and because polygonal bound-
ary representations are widely used in active contour
implementations.

Definition 1. Let ¢, and ¢, be as defined above.
The motion region M is defined to be the open region
enclosed by ¢, and c,. If M lies to the left of c/,,
then it is called an additive motion region. Otherwise,
M is called a subtractive motion region.

Joining all the additive motion regions into a region
M, and all the subtractive motion regions into M, we
can define

Rew = (R U My) — M,. 2)

Ryew is the new region that results from the motion.
The goal of a topology correction algorithm is to de-
termine its boundary dReqp -

Notice that portions of an additive region may ac-
tually overlap R, as seen in Figure 2(e). It can be
shown that R, is the closure of an open, bounded
subset of #2, and its (true) boundary, §Rpew, is a set
of disjoint simple closed curves. However, R ¢, is not
necessarily connected (even if R is), and in rare cases
it could even be empty!

Let 'R be 6R with the curve portions ¢, replaced
with the new curves c},,. The problem of correcting the



contours can now be restated as the problem of match-
ing 8'R t0 0Rpew. Let IR, be R without the c,,, that
is, let 0R. be the unmoving part of the boundary.

It is clear from the definition of the new region that
OR agrees with R, everywhere except in the mo-
tion regions and their boundaries. Since R only dif-
fers from §'R in the motion region boundaries, 6'R
also agrees with dR ¢, everywhere except in the mo-
tion regions and their boundaries, and thus we can
focus our attention on the motion regions and their
boundaries. Further, R, C &R, and thus the
problem simplifies to determining which portions of
0'"R must be deleted.

In the next section, we will show that the portions
to be deleted can be determined by examining the in-
tersections of the curves in §'R. Moreover, the ex-
amination will only use information local to the inter-
section point, using the motion region to (implicitly)
translate the local information into global information.
2.3 Correcting the contours

Let ¢(s) and d(¢) be a pair of closed boundary
curves (not necessarily distinct) in §"R that cross at
z = c¢(s1) = d(t1). Since the motion regions are dis-
joint and the curves in JR do not cross, exactly one
of ¢ and d must belong to the boundary of a motion
region M in a neighborhood of z. WLOG, assume
that ¢ C 6 M in the neighborhood, which means that
d crosses from M into M€ (or the other way) in the
same neighborhood (Figure 5). Let (sg,s2) C R with
s1 € (so, $2) such that

(Vs € (s0,52)) (c(s) € 0M).

Similarly, let (to,t2) C R with ¢t1 € (fo,t2) such that
either

d((to,tl)) € M€ and d((tl,tQ)) €M,
where d(S) := {d(s) : s € S}, or

d((to,tl)) € M and d((tl,t2)) € M°.

)

Let c(s() be the previous crossing point on ¢ before x
and c(s4) be the next crossing point on ¢ after z, and
similarly for d(¢;) and d(¢,). Note that it is possible
(and quite common in practice) that c(sj) = ¢(s1) or
c(s1) = c(sh), and even more that c(s)) = c(s1) =
c(s}). Similarly for d.

Directive 1. If d(tg) € M, then delete the points be-
fore d(t1) ending at d(t,;) and the points after c(sy)
ending at c(s}), excluding the end-points d(¢1), d(t),
c(sg), and c(sh). Otherwise, delete the points after
d(t1) ending at d(#}) and the points before c(s1) end-
ing at c(sp), again excluding the end-points them-
selves.

() (b)

Figure 5: (a) shows regions undergoing movement. (b)
shows a close-up view of the dotted circle in (a). In both
figures, c(s1) = d(t1) = z. See Section 2.3 for details.

Note that deleting portions of ¢ and d means that
the remainder of ¢ and d must be spliced at . The
effect of applying Directive 1 to all the intersections is,
in essence, to separate §'R into disjoint simple closed
curves and to delete those completely inside or com-
pletely outside R, e- Note that this is done with local
knowledge only.

Lemma 1. No point deleted by Directive 1 is in
R new-

Proof. There are four cases to examine: M could be
an additive or subtractive region, and d(¢9) could be
in M or in M¢.

Take the case of an additive motion region M
with d(t9) € M (Figure 5(b)). Since d(t) is the
first point before d(¢1) to intersect dM, and since
the boundary curves do not touch, it follows that
(Vt € (ty,t1))(d(t) € M). Then, for each of these
d(t), there exists a neighborhood N C M contain-
ing d(t). From equation 2, N C Ryuew and thus
d(t) & 0Rpew by the definition of a boundary point.

Now consider the points on c that are deleted. Be-
cause ¢ € O0M in a neighborhood of z, d C R
in a neighborhood of z. It follows that (Vs €
(s1,85))(c(s) € R) since R lies on the left of d and
M lies on the left of ¢ (Figure 5(b)). Consider a point
c(s), where s € (s1,s5). Because the motion regions
are disjoint and the boundary curves do not touch,
there exists a neighborhood N of ¢(s) with N C RUM
and NNM’' = { for all other motion regions M’. Then,
from equation 2, N C Ry and thus ¢(s) € R new-

Each of the other cases can be proved similarly. [

Directive 2. Any closed curve c completely con-
tained in M, the closure of the motion region, should
be deleted.



Lemma 2. No point deleted by Directive 2 is in
éRnew-

The proof is straightforward and is omitted.

Theorem 3. Let Dy and Dy be the sets of curve
points deleted by Directives 1 and 2 respectively. Then,

§'R — (D1 U D3) = §Rnew-

Proof. Let D = Dy U Dy. From the definition of the
motion regions and of R,ey, it is clear that dR e C
¢0'R. From the lemmas above, we have that R N
D = (), so that R ey € 6'R — D.

Let z € 6"R—D. Now either z € §R. or z € ¢, for
some ¢!, bordering a motion region. Suppose z € IR..
Then z is a limit point of R and is not in R. Also,
z ¢ D means that z is not in the interior of a motion
region. It follows that z is a limit point of R, and is
not in the interior of R ey, Which means € dR,eq -

Suppose z € c;,, where c;, € §'R borders an addi-
tive motion region M. Now, z € D means that ¢ R.
Also, x € §M means that z is not in the interior of
any motion region. Thus, x is not in the interior of
Ruew, but z is a limit point of M and thus a limit
point of Ryey. Therefore, € R e -

Similar reasoning holds when z is on the boundary
of a subtractive motion region. O

2.4 Determining the topology

The ideas presented above can be used to ensure
that the boundary contours correctly represent the re-
gion even when the topology of the region changes.
They do not, however, tell us what the new topology
is. The topology of an arbitrary region cannot in gen-
eral be determined with purely local information [11].
We can nevertheless use temporal knowledge to avoid
examining all the points in the boundary represen-
tation. Consider an additive motion region through
which a single curve portion passes (e.g. Figure 2(e)).
If the two intersecting curve portions ¢; and ¢y be-
long to the same boundary curve then, because the
motion region is an additive region, the (sub)region
has wrapped around on itself and has thus created an
extra hole. On the other hand, if ¢; and ¢; belong
to two different boundary curves, then two subregions
have merged, and thus a hole disappeared or two pre-
viously disjoint regions are now joined. The problem
here is that one cannot maintain the necessary infor-
mation in a local manner. For example, suppose each
curve portion had a tag indicating the boundary curve
to which it belongs. If a single curve splits, then all the
portions on one of the new curve must have their tag
updated; this is clearly not local. It is not completely
global, however, as only the curve involved in the split
need be modified. This is what we call pseudo-local.

(a) (b) ()

Figure 6: The medium grey area shows the points that
are part of the original region. The dark grey indicates an
additive motion region, while the light grey indicates an
subtractive motion region.

3 Polygonal implementation

We have implemented the ideas above using a
polygonal representation for the boundary. This sec-
tion briefly describes the implementation. The bound-
ary contours are represented by a set of polygons
which are in turn represented by a set of vertices. A
“motion function” is used to determine a motion vec-
tor for each vertex. The results presented in Section 4
use the DBM-Estimator objective function [14].

The algorithm alternately moves a vertex by apply-
ing a motion vector and corrects the representation if
necessary. Since only a single vertex is moved, the
motion region is always a quadrilateral (Figure 6). In
most cases the quadrilateral is simple and there is a
single motion region. When the quadrilateral is not
simple, we consider it to form two disjoint motion re-
gions, one additive and one subtractive.

To correct the representation, we first compute all
intersections caused by the movement. The search
for intersecting edges can be localized to area around
the moving vertex by constraining the maximum edge
length. The edges in this area can be efficiently re-
trieved by storing the vertices in bins indexed by their
location. There are typically very few edges in the area
(less than 5), and so the intersections can be computed
in O(1) time in the common case.

The next step is to apply the directives presented
above. Directive 1 is implemented efficiently using a
few dot and cross products because the intersections
arise from line segments and because the motion re-
gion is a quadrilateral. Directive 2 is implemented
efficiently using the vertex bins to find contours com-
pletely contained in the motion region. Both directives
take O(m + 1) time in the common case, where m is
the number of edges that need to be deleted.

4 Results

By simply combining the algorithm above with an
energy function to direct the boundary’s motion, one
obtains an active contour that maintains valid bound-
ary representations and properly handles topological
changes. Here we present results using energy func-
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Figure 7: A single contour initialized ten pixels away from the image boundary shrinks and splits to tightly wrap the

phytoplankton.

tions defined by a DBME objective function [14] as
applied to two different applications: surface extrac-
tion and phytoplankton classification.

Given a model and a seed point, the surface extrac-
tion problem is to (a) extract the maximal connected
region matching the model and (b) to determine the
model parameters. Here we extract planar surfaces
from range images. Figure 1 shows how the algorithm
proceeds given a seed point on a ring. In our exper-
iments, the energy function often generates motions
that cause a single intersection (Figure 2(f)) and some-
times even complete reversals (Figure 2(g)). This oc-
curs more often when a contour smoothing term is not
used. Having an algorithm capable of handling these
changes in topology and maintaining a valid boundary
representation is essential in extracting (and correctly
describing) complex surfaces.

The second application is phytoplankton classifica-
tion. The ability to robustly extract multiple organ-
isms from noisy images is important for this task. For
this application, we initialize a single rectangular poly-
gon a few pixels away from the image boundary and
“shrink-wrap” the phytoplankton. As the active con-
tour evolves and splits, the colonies form regions of
their own and are thus isolated from the background
and each other (Figure 7). The ability to change topol-
ogy is crucial in detecting multiple organisms in a sin-
gle image because it allows the contours the flexibility
to split and wrap tightly around the objects without
any prior knowledge of the locations and shapes of
the organisms. The tight wrap also enables us to eas-
ily discard the clutter (such as the small regions in
Figures 7(c) and 7(d)) and concentrate on classifying
the phytoplankton.
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