142 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 8, NO. 2, JUNE 2004

Efficient Migration of Complex Off-Line Computer
Vision Software to Real-Time System Implementation
on Generic Computer Hardware

James Alexander Tyrrell, Justin M. LaPre, Christopher D. Carothers, Badrinath Roysam, Member, IEEE, and
Charles V. Stewart, Member, IEEE

Abstract—This paper addresses the problem of migrating large
and complex computer vision code bases that have been developed
off-line, into efficient real-time implementations avoiding the
need for rewriting the software, and the associated costs. Creative
linking strategies based on Linux loadable kernel modules are
presented to create a simultaneous realization of real-time and
off-line frame rate computer vision systems from a single code
base. In this approach, systemic predictability is achieved by
inserting time-critical components of a user-level executable
directly into the kernel as a virtual device driver. This effectively
emulates a single process space model that is nonpreemptable,
nonpageable, and that has direct access to a powerful set of
system-level services. This overall approach is shown to provide
the basis for building a predictable frame-rate vision system using
commercial off-the-shelf hardware and a standard uniprocessor
Linux operating system.

Experiments on a frame-rate vision system designed for com-
puter-assisted laser retinal surgery show that this method reduces
the variance of observed per-frame central processing unit cycle
counts by two orders of magnitude. The conclusion is that when
predictable application algorithms are used, it is possible to
efficiently migrate to a predictable frame-rate computer vision
system.

Index Terms—Computer vision for surgery, Linux, open-source
computing, ophthalmic surgery, real-time vision systems.

1. INTRODUCTION

OMPUTER VISION algorithms have rapidly matured

over the past decade, both in terms of sophistication and
the range of realistic applications. We are particularly interested
in algorithms for real-time frame-rate processing/analysis of
image sequences (e.g., digital video) for use in guided surgical
instrumentation. In these systems, a digital video camera is
used to capture images of a surgical scene, at frame rates
ranging from 15 to 200/s. These image sequences are analyzed
in real-time to extract quantitative information that can be used
to monitor the surgical procedure, perform spatial dosimetry,
track structures, compensate for motion, detect hazards, and
generate control signals for surgical tool guidance.

Manuscript received January 24, 2003; revised September 12, 2003. Portions
of this work were supported by the National Science Foundation Experimental
Partnerships under Grant EIA-0000417, by the Center for Subsurface Sensing
and Imaging Systems under the Engineering Research Centers Program of the
National Science Foundation (Award EEC-9986821), by the National Institutes
for Health under Grant RR14038, and by Rensselaer Polytechnic Institute.

The authors are with Rensselaer Polytechnic Institute, Troy, NY 12180-3590
USA (e-mail: roysam@ecse.rpi.edu).

Digital Object Identifier 10.1109/TITB.2004.828883

The present work is inspired by laser retinal surgery [1]-[4].
This procedure is widely used to treat the leading causes
of blindness, including macular degeneration and diabetic
retinopathy [5], using instruments that lack real-time guidance
and control. For this and other reasons, the failure rate of these
procedures is close to 50% [6]. A combination of accurate,
responsive, and predictable computer vision aided guidance at
frame rates can potentially improve the success rate.

Recent advances in fast and robust vision algorithms, and fast
computing hardware make it possible to address the aforemen-
tioned needs [7]-[17]. However, researchers face a very prac-
tical barrier: Many vision systems are prototyped on software
tools that were not designed expressly to operate in real-time
implementations. This is further complicated by the fact that the
software in many vision applications is unavoidably complex,
relying heavily on team development, modern object-oriented
programming methods, and leveraging provided by complex
third-party software libraries. Code modification for the purpose
of transitioning to real-time is either too expensive, error prone,
impractical, or infeasible. Even if an expensive software rewrite
is performed, one is faced with the problem of ensuring accu-
racy and consistency between separate code bases. This again is
often impractical and inconsistent with modern software engi-
neering principles. This last point is especially important when
the vision algorithms themselves are in a constant state of refine-
ment, which is often the case in a research setting. In summary,
there is a compelling need to minimize (ideally, eliminate) the
time and effort associated with migrating frame-rate vision sys-
tems to real-time implementations. Ideally, this migration would
be simple enough to be considered “transparent.” With this in
mind, we propose a rapid prototyping solution to create a ro-
bust and predictable execution environment without the need to
modify the vision code.

While a successful framework for transparently migrating
off-line code to an equivalent real-time system has tremendous
utility, it has been difficult prior to the advent of open source
computing. Specialized operating systems (OSs)/environments
were often necessary for achieving successful real-time per-
formance. This was often made difficult by the “black box”
nature of commercial or third-party OS and development en-
vironments. Each system must make certain tradeoffs between
the real-time needs of a various target systems. As we have
already mentioned, many vision systems contain code that was
never intended to operate in real-time. Without prior knowl-
edge, it is difficult to predict how these tradeoffs will affect

1089-7771/04$20.00 © 2004 IEEE

TYRRELL et al.: EFFICIENT MIGRATION OF COMPLEX OFF-LINE COMPUTER VISION SOFTWARE TO REAL-TIME SYSTEM 143

a real-time system under different conditions. Environments
built around an embedded model, typically characterized by
lightweight code modules and a small memory footprint, are
simply not appropriate for many vision systems that routinely
need in excess of a gigabyte of random access memory (RAM).
Complex event-driven real-time models may quickly obfuscate
the basic need for highly predictable synchronous execution
of a frame-rate vision system.

With the emergence of high-quality open-source commu-
nity-developed OSs such as Linux, new options are available
for the design and implementation of real-time vision systems.
The present work is inspired and encouraged by the results of
Hager and Toyama [10], Baglietto et al. [11], and Srinivasan et
al. [17] using low-cost commercial off-the-shelf (COTS) com-
puting platforms for real-time image processing applications,
and builds upon our recent retinal image analysis algorithms.

The following sections describe the proposed methodology
and lessons learned. Sections II-A—-B describe the core method-
ology, in the context of the retinal application of direct interest.
Section II-C summarizes previous and related work in the
real-time community highlighting some of the strengths and
deficiencies of various existing real-time frameworks from
which motivate the present work. Section III provides an
in-depth discussion on details of our proposed method.

II. MOTIVATION AND APPROACH
A. Motivation

At the core of a frame-rate vision system are generally three
elements: a camera, a software component to perform image
processing, and hardware to generate an external control signal.
The interaction of these three components typically follows in
a synchronous or cyclic executive manner that is initiated by
the capture of an image by the camera and supporting hard-
ware—firmware (e.g., frame grabber). If we turn our attention to
the camera, we notice two things: 1) modern COTS video sys-
tems can deliver true hard real-time performance with minimal
latency and jitter and 2) modern hardware design allowing direct
memory access (DMA) and bus mastering essentially free the
rest of the computer from processing overhead. Hence, it is now
possible to capture frames in real-time and make them available
in memory (RAM) for processing on a central processing unit
(CPU) that is largely unburdened by the imaging subsystem and
vice versa. We exploit these developments in order to establish
efficient and predictable real-time performance. The mechanism
that we propose is based on intelligent use of device drivers.

In the Linux OS, device drivers are needed as an intermediary
to access a hardware device from user space. Device drivers
reside in kernel space and are only accessible from a user-level
process in a protected manner through the OS. In contrast,
kernel-resident device drivers are free to access a number of
important system-level services not directly available to a stan-
dard user-level process. This includes direct access to DMA,
teletype serial interface, high-resolution timers, and access
to other third-party device drivers installed on the machine.
Device drivers can also share data across the user—kernel
boundary via the standard ioctl() interface or direct memory

mapping.

Achieving frame-to-frame predictability is a primary issue for
frame-rate vision systems operating in real-time. To achieve this
high degree of predictability, we must first remove all real-time
threats associated with a modern multitasking OS. Fortunately,
the Linux kernel provides a foundation for doing this by virtue
of being nonpreemptive and not swapping kernel memory. This
gives us the ability to emulate a single-process model directly in
kernel by simply relinking the time-critical components of our
object code into a virtual device driver. As the name implies,
our approach is to create and use a standard Linux device driver
without an associated physical device.

It is important to note that Linux does offer a similar capa-
bility by operating in single-user mode, e.g., Linux “S.” Un-
fortunately, this execution mode is highly restrictive in terms
of OS capabilities. For instance, there is no network support
and certain hardware may not be accessible. What is particu-
larly problematic from the standpoint of a vision system is that
there is no graphics or graphical user interface (GUI) support
in Linux S mode. This is not acceptable for clinical use where
off-line monitoring in a GUI framework may need to coexist
with a real-time executive. Also, interrupt handling cannot be
handled effectively from outside kernel space. In contrast, our
approach has the advantage of being simple while achieving
good real-time predictability without restrictions on the oper-
ating mode of the host system. In short, we achieve a real-time
implementation by simply adding a new virtual device to the
computer.

As will be illustrated, the virtual device driver is basically an
encapsulated single process space model installed in the kernel
and invoked via a call from user space. Under this model, all
real-time operations take place in the OS kernel under protection
from real-time threats. Hence, instead of using asynchronous
real-time processes or thread-level scheduling mechanisms that
include context switches, translation-lookaside buffer misses,
cache misses—flushes, and page swapping, the entire computer
is viewed as a single process system tasked with the sole pur-
pose of devoting as many CPU cycles as possible, for a specified
duration, to the direct execution of our real-time code. There-
fore, we propose a paradigm based on transparent migration of
an off-line system to an equivalent online real-time system. The
key is leveraging the inherent real-time capabilities of a stan-
dard Linux OS obviating the need for real-time extensions or
extensive code rewriting.

B. Real-Time Retinal Image Analysis

The time-critical object code that is to be installed in kernel
must be capable of executing within the time bounds of the
target system’s desired frame rates. In order to explore the
real-time feasibility of our proposed methodology, we introduce
such a system. A brief overview of this system is given here in
order to establish a context for the experiments to be presented
later. A more detailed description is deferred to the Appendix.
Our intention below is also to convey the fact that our code base
is highly complex with substantial memory and processing
demands; in short, we feel it is a prototypical frame-rate vision
system.

In this work, we have experimented with two computer vision
applications, both related to laser retinal surgery. In these appli-

144 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 8, NO. 2, JUNE 2004

Frame i

Indexing
Database

Indexing Based Absolute
Registration Guess

v

_

Frame (i + 1) Frame (i + 2)

ICP Based Transformation

Refinement & Verification

1

1

! ICP Based Transformation
1

E P Refinement & Verification
1

ICP Based Transformation

Refinement & Verification

Fig. 1.

@m =6 +A 9(1@
(Output)

Illustrating the retinal spatial mapping, referencing, and tracking applications of interest. Prior to surgery, a spatial map of the retina is constructed. It

consists of mosaics (lower row), an indexing database, and surgical plans. Spatial referencing (Box A) is the technique of registering each on-line image frame
captured by a camera onto the spatial map. Correct registration is indicated in this figure by overlaying vascular features detected in the image frame over the
corresponding mosaic illustration in the lower row. Tracking (Box B) is the technique of rapidly registering an image frame to the previous frame assuming small
motions. For simplicity, this figure omits mechanisms for handling various types of errors and exceptions.

cations, it is of interest to locate specific points on the retina with
the highest achievable accuracy and reliability for the purpose of
guiding a surgical laser, monitoring the surgery, detection of er-
rors, and performing beam shutoffs whenever appropriate. The
retinal images on the upper row in Fig. 1 were captured using
a digital mega-pixel video camera (1024 x 1024 12-bit pixels)
mounted on a standard clinical instrument known as a fundus
camera or biomicroscope [18]. This represents a partial angle
(30°-60°) flat projectional view of the complete curved retina.
The branched structure in this image is the retinal vasculature.
The vasculature is usually stable and can be used as a source of
spatial landmarks. These landmarks (features) are used to gen-
erate a spatial mosaic and map for the entire retina from a series
of preoperative diagnostic images.

The first application of interest, termed “spatial referencing,”
is a method for absolute registration of an image frame cap-
tured by a digital camera to a preconstructed spatial map of the
human retina. This method is summarized in Appendix A. The
second application, termed “robust tracking,” enables rapid
registration of successive image frames within a predictable

computational budget. This latter algorithm is summarized in
Appendix B. Fig. 1 illustrates the roles of these two algorithms.
In this illustration, three successive image frames from the dig-
ital camera are presented in the uppermost row. The first frame
is registered using the absolute spatial referencing algorithm.
Since the second and third frames undergo small motions
relative to the first, they are registered using the robust tracking
algorithm presented in Appendix B. The spatial referencing
algorithm is highly complex and unpredictable due to the
opportunistic manner in which it reduces pixel processing.
Therefore, it is only invoked when needed. For instance, when
the first frame of a sequence is obtained following a fadeout,
or after a large motion or a registration failure. In contrast,
the robust tracking algorithm is very efficient and predictable.
In short, these algorithms and data structures are capable of
rapidly estimating the position of the surgical laser anywhere
on the retina for each image frame.

Several factors contribute to the size and complexity of these
applications. In order to perform highly precise registration,
we use a 12-parameter quadratic transformation model to map

TYRRELL et al.: EFFICIENT MIGRATION OF COMPLEX OFF-LINE COMPUTER VISION SOFTWARE TO REAL-TIME SYSTEM 145

TABLE 1
SOURCE CODE PROFILE SHOWING RELATIVE SIZE OF MAJOR SOFTWARE COMPONENTS THAT WE LINK INTO A KERNEL MODULE.
Library Static libraries Object modules Static Size (MB)
VXL 17 1298 27
RETL 8 160 15
PUBL 9 67 3

The VXL library is a third party standard C++ library. The RETL library is the Rensselaer tracing

library, and PUBL is a public RPI vision library. In addition to a static code size of ~45 MB, we

add a 300-MB data segment to the final device driver in the form of a static buffer. We have

experienced little difficulty loading our modules on a system with 1 GB of RAM.

image coordinates to global coordinates in the preoperative
retinal mosaic [7]. The use of a quadratic transform is necessary
to mitigate the projective distortions resulting from the retinal
curvature combined with a weak perspective camera. This
transform is estimated by a robust M-estimator [19] over a set
of closest point correspondences between an image and the
mosaic. The estimate is found by employing a procedure called
iteratively reweighted least squares (IRLS) [20]. In order to
achieve fast computation in the face of large data volume, the
spatial referencing method relies on extensive precomputed
data structures that trade storage in favor of speed. All of
these algorithms are complex in their implementation, utilizing
object-oriented team programming effort, third-party libraries,
and have substantial static and run-time memory requirements.
Table I profiles the static size of the object code for the spatial
referencing software system. In addition to a static code size
of ~45 MB, this code typically requires roughly 300 MB of
dynamically allocated memory at run time.

C. Real-Time Computing Background

From a computational standpoint, the combination of
techniques presented in the previous section enables spatial
referencing at extremely high speeds, approaching frame rates
notwithstanding the high data rates and complexity. This forms
the necessary but insufficient basis for building a real-time
spatial referencing system for ophthalmic applications. Still
needed is a real-time OS (RTOS) that combines high throughput
and low latency responsiveness to provide a predictable envi-
ronment for meeting real-time deadlines.

Choosing an appropriate RTOS requires understanding the
characteristics of the target real-time application. Real-time ap-
plications are generally characterized as being hard or soft as de-
scribed by their relative time sensitivity to a real-time deadline.
A hard real-time application becomes invalid when a deadline
is not met. By contrast, soft real-time applications can tolerate
more latency and the deadline constraint is less critical. This
work focuses on hard real-time frame-rate vision systems.

The scheduling demands of a real-time application are an
important factor when classifying the nature of a real-time
application. One of the simplest scheduling models is cyclic
executive or frame based execution [21], [22]. Applications of
this type are characterized as being synchronous, often based
on periodic execution of logically sequential tasks. This type
of real-time system requires a trivial scheduling mechanism
and is unlikely to benefit from complex parallel hardware con-
figurations or multithreading. Applications that require truly

preemptive process/thread based scheduling to respond to asyn-
chronous inputs are defined as being event driven [21], [22].
Real-time frame-rate vision systems are naturally characterized
as being cyclic executive. Hence, this is the target model for
the proposed methodology.

D. Previous Work

Maeda [23] demonstrated the efficiency gains associated with
executing type-safe user-level programs directly in the kernel
space of a standard Linux OS. The idea is to eliminate the over-
head associated with a transition across the protection boundary
separating the user and kernel process space. This is an inter-
esting approach that is based on type-safe-assembly language
extensions to user-level object code [24]. These extensions are
designed to protect the integrity of the OS in the presence of
unstable or nefarious programs while at the same time greatly
reducing systemic overhead in applications that must frequently
access low-level services. Importantly, this approach is consis-
tent with our previously stated goals of maintaining a common
development and real-time testing environment on a single plat-
form utilizing a common code base. Unfortunately, the language
extensions used to make the user-level code “type safe” include
array bounds and other memory checking operations that in-
troduce overhead that is unacceptable for our purposes. In re-
ality, this type of methodology is probably best suited for soft
real-time applications such as multimedia and communications
systems that require frequent access to specialized system-level
services.

A similar approach to the one proposed here was developed
by Srinivasan et al. [17]. Their approach uses COTS hardware
components and a standard Linux OS to create a firm real-time
execution environment. The notion of a firm real-time environ-
ment applies to time-critical real-time components that must un-
avoidably rely on nondeterministic OS services typically found
on a timesharing OS. Again, this approach is better suited for
multimedia and communication applications and is not a truly
hard real-time method. An interesting aspect of this work how-
ever, is the introduction of a real-time priority-based scheduling
mechanism into a standard Linux OS. This is a common ap-
proach for achieving true hard real-time performance from a
standard Linux OS.

RT-Linux [25] and TimeSys Linux [26] are proprietary Linux
variants that offer an abstract view of the Linux kernel that
can be configured dynamically to create a real-time framework
without compromising the integrity of the standard Linux OS. In
short, these two systems promise to offer true hard real-time per-
formance without complex specialization of the existing Linux

146 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 8, NO. 2, JUNE 2004

kernel. This is a powerful extension to what is already a well-
suited OS for real-time development.

Both of these Linux RTOS variants are very appealing from
the standpoint of transparent migration. The real problem is that
they introduce a layer of abstraction into a standard Linux OS
that allows for micro-controlled scheduling of events. This is
necessary for event driven applications but has no real use in
our application. Even more problematic is that the kernel must
be made preemptable to handle asynchronous behavior. This
forces kernel modules to be reentrant which raises serious com-
patibility issues for existing hardware device drivers. Of par-
ticular note is the fact that RTLinux is built around the use of
kernel modules implying that the steps that are described in
this paper have essentially already been taken. Unfortunately,
it then imposes a mutually exclusive existence constraint be-
tween real-time executives and a standard Linux OS. This is
much more extreme than our method of simply using standard
Linux artifacts to achieve a real-time implementation.

III. TRANSPARENT MIGRATION METHODOLOGY
A. Overview of the Method

The main components of the proposed methodology are listed
below:

1) encapsulate the application algorithms into a loadable
kernel module (LKM);
2) design a virtual device driver that emulates a single
process model in kernel;
3) register device driver with Linux OS enabling user-level
access.
The key to our approach for ensuring systemic predictability is
embedding the image processing system into the Linux kernel.
In this environment, it is possible to eliminate OS-level sched-
uling and interrupt overheads as well as mitigating the uncer-
tainties introduced by a shared memory environment. The use
of a device driver is a natural approach to achieving the neces-
sary real-time performance while still allowing user- and kernel-
level interaction. Under this model, all time-critical processing
is deferred to a kernel-level process accessed directly from user
space as a device driver. When the time-critical processing is
completed, the system returns to user space. From the stand-
point of a frame-rate vision system, this implies that our device
driver must directly interact with any necessary hardware com-
ponents, such as video frame grabbers, from within the context
of akernel process. This is essential because real-time execution
cannot be guaranteed if any processing is to be done outside of
kernel mode. Fortunately, as noted earlier, Linux device drivers
are intended to work in this manner.

B. LKMs

In this section, we describe LKMs and how they are used
to create a virtual device driver that emulates a single process
model in kernel space. Typical examples of LKMs are device
drivers but can include any functionality that might need to be
shared by multiple processes. The idea of an LKM is to dynam-
ically add executable object code directly to the Linux kernel
while the system is running. LKMs are essentially no different
than relocatable object modules created by a standard compiler

like GNU’s C compiler (GCC). They can be written in C or C++
and there are in fact surprisingly few restrictions on the nature
and size of the code. We routinely create LKMs in excess of
300 MB (refer to Table I for an overview of our code base size).
The main difference is that LKMs must include two functions
initModule() and cleanupModule(). Each function is guaran-
teed to be called exactly once.

The function initModule() serves as the entry point into the
module and is called when a kernel module is loaded via the
Linux insmod utility [27]. The insmod utility is used to add
modules to the kernel while the system is running. After loading
a module using insmod, functions and data in that module be-
come part of the Linux kernel space. The Linux kernel is mono-
lithic in the sense that all modules (including the kernel itself)
share a single kernel address space. This means that functions
and data in one module are accessible from another. In addi-
tion, kernel functions can be invoked from a user-level process.
These features of the Linux kernel model are important for the
development of our real-time prototype.

C. Kernel Module Insertion

The process of taking large-scale user-level software and re-
alizing it as a kernel module is relatively straightforward pro-
vided one adheres to some constraints. Aside from the hazards
resulting from careless use, a potential problem is that the Linux
kernel is a restricted process space and does not provide much
of the functionality that user-level processes expect in order to
execute.

Specifically, there are four key areas where user- and
kernel-level processes differ:

1) dynamic memory allocation;
2) device input—output (I/O);
3) global variables;

4) stack management/usage.

The first three differences can all be handled using the linker
operating directly on the object code. The last issue is more
restrictive and in some cases can only be reconciled if certain
conditions are already met by the existing object code.

Under Linux, kernel modules do not have a module-specific
heap and stack segment. This implies that kernel modules
cannot allocate dynamic memory the way a user-level process
can. However, Linux does provide two specific kernel variants
of the memory allocation system called malloc(). The first
is called kmalloc(), which allocates physically contiguous
blocks. This is ideal for our purposes but it becomes unreliable
as memory gets fragmented. The other is called vmalloc(),
which allocates memory from the kernel’s virtual map. In fact,
this is the function used by insmod to load a kernel when
it cannot be placed in physically contiguous real memory.
These allocation functions have two problems: 1) they both
allocate memory blocks whose sizes are in powers of two
and 2) handling memory allocation requests during real-time
execution is a potential source of uncertainty.

To overcome these limitations, we developed a novel kernel
memory allocation function. As mentioned, the goal is to emu-
late a single process space directly in kernel. Hence, we intro-
duce our own version of malloc() and free() that operate on a
static buffer linked directly to the object code. In other words,

TYRRELL et al.: EFFICIENT MIGRATION OF COMPLEX OFF-LINE COMPUTER VISION SOFTWARE TO REAL-TIME SYSTEM 147

/* add these two declarations */
unsigned char g_static_buffer [MEM SIZE];
int giOffset;

_ ptr_t _ default_morecore (ptrdiff t increment)
{
/* replaces call to sbrk */
__ptr t result = &g_static_buffer[giOffset];
giOffset += increment;
if (result == (_ ptr_ t)
return NULL;
return result;

}

Fig. 2. Illustrating the technique for modifying the standard UNIX memory
allocation system call “malloc.” Note the g_static_buffer array which serves
as our virtual data segment in kernel. Function fulfills virtual memory requests
by simply returning a pointer from this array.

-1)

we have circumvented the fact that kernel modules do not have a
heap segment by simply inserting a new allocation routine. The
design of a special purpose malloc routine is described below,
and key programming lines are provided in Fig. 2.

Starting with the standard GNU malloc routine that is
available in open-source form [28], we locate the function
morecore.c which contains a call to the function sbrk(). The
sbrk() function, pronounced “S-Break,” is used to dynamically
reallocate the data segment of the calling process. Specifically
it increments (or decrements) the break address, i.e., the
address of the first location beyond the end of a process’s data
segment. The key artifice is to replace sbrk() with a simple
pointer increment in our static buffer.

Next, we recompile the GNU-malloc source files and
link them into a single new relocatable object module called
“new_malloc.0” in the examples below. Having reimplemented
malloc, we need to replace all instances of the standard version
in the code. This can be done quite easily in one step during
the linking phase of compilation using the wrap functionality
provided by the linker. The idea is to substitute each reference
to a chosen procedure in an object module’s symbol table with
a reference to a new procedure. Hence, we “wrap” the old
procedure with the new one, using a UNIX command of the
form

ld — wrap malloc module.o new_malloc.o.

The end result is that we have created an emulated heap seg-
ment for our real-time kernel modules. From the standpoint of
the Linux virtual memory system, this heap segment exists as a
contiguous memory zone that can only be used by our real-time
module.

The function wrapping technique used to substitute the kernel
malloc routine can be used to resolve certain device I/O prob-
lems as well. Some simple I/O requests are trivially handled.
For instance, calls to printf() or the C++ operator cout can
be wrapped using the kernel variant printk(). Calls to printk()
are mapped to a virtual device, usually /var/log/messages on
Linux systems. They can also be effectively disabled using a
null file.

Some other device I/O requests may present more of a
problem but can generally be handled by choosing appropriate
functions found in /kernel/ksyms.c and then performing
the same function wrapping technique previously described.

Fortunately, it is a reasonable assumption that the real-time
vision and control system does not perform any device I/O
directly. Rather, such systems generally work in conjunction
with specialized hardware/software supported by a suitable
device driver. A common example is a digital image frame
grabber device.

The use of global variables may present problems when
creating LKMs. Note that all kernel modules share the same
address space. Under this model, global variables in an object
module become global to the entire kernel address space
meaning global variable names must be unique. This is gener-
ally not a major problem and can be resolved using name spaces.
However, a more subtle issue is relevant. When a user-level
process is created, the OS will invoke the constructors for each
global and static object before the main() function is called. In
kernel space, the constructors are not called. Fortunately, this
problem can be solved using the linker by adding the following
link line command and calls as described below:

ld — Ur — static — o module.ogcc — lib

—path/crtbegin.o[files] gcc — lib — path/crtend.o.

This link line explicitly adds the GCC files (known as “stubs’)
crtbegin.o and crtend.o that are used to call constructors and
destructors in a normal executable. The last step is to add the call
_do_global_ctors_aux() in the initModule() function and the
call _do_global_dtors_aux() to the cleanupModule() function.

A practical issue relates to stack usage in Linux kernel space.
In Linux, 8 KB (two memory pages on an Intel IA32 architec-
ture) of stack space are allocated for each kernel process. This
space must be shared with the process control block [(PCB) i.e.,
struct task] which begins at the last ~700 B of the 8-KB ad-
dress space. Thus, in total, the kernel has ~7 KB of usable stack
space for each process.

This arrangement presents the potential for the process’s
kernel stack to grow directly down into the PCB, which would
corrupt the process state and potentially other kernel data
structures. Ultimately, stack growth beyond this ~7-KB limit
will potentially cause the system to become unstable. This is a
serious problem, especially since this is a run-time issue and
it can be difficult to predict stack usage a priori. This problem
can be avoided by the use of straightforward programming
guidelines. Specifically, the programmer should avoid allo-
cating large objects on the stack either as local variables or as
function parameters. The use of recursion must also be handled
carefully. In applications where this constraint is too restrictive,
Linux patches are available for reconfiguring the kernel stack
size. Of course we have made every effort to avoid operating
outside the system parameters established in a standard Linux
OS and we have experienced little trouble in our work to date.

D. System Call Interface

Using the preceding techniques, we are able to relink existing
object code into a relocatable kernel object module that can
effectively emulate a single process space model in kernel.
In order to use the kernel module to perform time critical
operations from user space, we need to link the module as a
device driver. As mentioned, all kernel modules must include

148 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 8, NO. 2, JUNE 2004

the functions initModule() and cleanupModule(). To qualify
as a character device driver, the module must register with the
OS via a call to register_chrdev() from within initModule()
and also unregister_chrdev() in cleanupModule(). Next, the
module must implement a set of functions in the file_operations
structure (include/linux/fs.h) that is sent as an argument to
register_chrdev(). Typical file operations include open, ioctl,
read, and write. It is from within these functions that we call
our computer vision code to invoke real-time processing. After
loading with insmod, an entry for the module can be found in
/proc/devices. This entry contains the name of the module
and major version number. A simple call to mknod in the
/dev directory providing the name and major version number
will create the device entry. After following this procedure, the
device driver can be accessed by simply opening the device by
name from a user-level process and calling a set of functions
that effectively wrap the core time-critical functionality.

E. Handling Interrupts

Using the inherent properties of Linux discussed above, we
can use a virtual device driver to provide predictable real-time
performance without modifying any of the application code. At
this point, we have described everything needed to establish
rapid prototyping of a real-time system. However, we cannot
establish true hard real-time without addressing the issue of
interrupts.

While it is true that a user- or kernel-level process cannot pre-
empt our virtual device driver, hardware interrupts can and gen-
erally should cause preemption. Of course this is certainly a low
threat priority as long as the host system is properly configured.
Nonetheless, interrupt handling can still affect predictability.
The simplest solution is just to call the functions cli() and sti()
(clear and set interrupts, respectively) upon entry and exit from
kernel space. This turns off all interrupts making a process sole
owner of the CPU unless a hardware failure or other exception
is generated (e.g., segmentation fault, divide by zero). This is
an easy solution and most device drivers written to handle an
interrupt request perform this operation at some point. There
is, of course, the potential to render essential hardware like a
frame grabber inoperable. In this case, the solution is to se-
lectively mask out all nonessential interrupts. In our work, we
have generally relied on the cli()/sti() method but masking is a
common and well supported operation designed to be performed
from kernel space. For example, one might require temporary
masking of the mouse and keyboard if running in an X-Win-
dows environment.

IV. EXPERIMENTAL RESULTS

Using the virtual device driver configured as described above,
we can establish hard real-time predictability by protecting the
time-critical components of the system from the threats asso-
ciated with a shared memory process space. To explore the ef-
fectiveness of the proposed methodology, we will compare the
predictability of various kernel- and user-level configurations of
a frame-rate vision system. In all our experiments, we used an
Intel IA32 desktop computer with a 1-GHz processor and 1 GB
of RAM running X-Windows under Red Hat Linux 7.1 kernel
version 2.4.18.

Toctl() Open()

User
Kernel
---- Virtual Device Frame Grabber

I““-“E“““‘I @
! 1
1 v :
: 1
! CoM i
: ' DMA
1 1
1 1

Fig. 3. System design for real-time tracking. Initially, the frame grabber
is opened from user space placing the device into the Linux IRQ chain.
Henceforth, the user process interacts directly with the virtual device driver
that serves as a proxy for the frame grabber device driver. The circular arrow
indicates the cyclic real-time executive that is protected in kernel space. In
this conceptually simple arrangement, the virtual device driver simply calls
the frame grabber’s read() method directly. Also indicated is an interface to a
serial port (COM) that can be used to control digital camera settings and other
peripheral devices.

A typical application is to use a single call from user space
into our virtual device driver to invoke a cyclic executive loop
that performs real-time frame-rate processing. As an example,
we have configured a device driver to perform tracking in
kernel space while the landmark/constellation registration is
performed in user space (Fig. 3). Once a frame is registered in
user space, the transform is sent to the kernel at which point
our device driver begins signaling the frame grabber to acquire
the next image. This process continues until the tracking mech-
anism fails to register an image after which point control is
given back to the invoking user process. After returning to user
space, any relevant information can be retrieved via the ioctl
interface. The resulting control sequence typically consists
of a binary signal that must be set or reset by the real-time
application every 33 ms. Failure to complete this computation,
as detected by a process or hardware subsystem that is external
to the application, represents a missed deadline.

In the first experiment described above, our sole interest is
in establishing systemic real-time predictability. Hence, we will
operate our frame-rate vision system multiple times on a single
image effectively eliminating any timing variation due to the
algorithm itself. In order to get results under realistic conditions,
it is necessary to simulate actual run-time conditions. Therefore,
we use a modified version of a prototype system to perform our
tests. Currently, we have a prototype vision system that uses
a Dalsa 1M30A digital video camera to capture 1024 x 1024
12-bit grayscale images at ~30 frames/s. Using an ITI PC-Dig
frame grabber, we memory map the captured images to RAM.
These images are in raw format and must be converted via an
explicit copy operation to a double buffer. Using this prototype
system, we create a testing environment by simply suppressing
the switching of buffers and placing a single resident image in
one of the buffers. We operate on that image continuously and
simply allow the camera to capture blank images.

In order to obtain timing results, we create two versions of
the vision system, referred to as user mode and kernel mode, re-
spectively. Each mode shares a common user-level executable
known as the driver. This driver program calls the first com-
puter vision application of interest to us—Ilandmark/constella-

TYRRELL et al.: EFFICIENT MIGRATION OF COMPLEX OFF-LINE COMPUTER VISION SOFTWARE TO REAL-TIME SYSTEM

TABLE 1I
SUMMARY OF TIMING RESULTS EXPRESSED IN RAW CPU CYCLES ON A 1-GHz PROCESSOR. THE GOAL OF THIS EXPERIMENT IS TO DETERMINE THE SYSTEMIC
PREDICTABILITY OF EACH CONFIGURATION BY PROCESSING A SINGLE IMAGE MULTIPLE TIMES. OBSERVE THE ROUGHLY TWO ORDERS OF MAGNITUDE
REDUCTION IN THE STANDARD DEVIATION AND IN THE DIFFERENCE BETWEEN THE HIGHEST AND LOWEST READINGS (LAST COLUMN)

149

Execution Mean St. Dev. Maximum Minimum Max-Min
Mode (Cycles) (Cycles) (Cycles) (Cycles) (Cycles)
User mode 93,467,136 | 36,243,542 | 119,095,190 | 67,839,081 51,256,109
Kernel mode | 70,042,109 418,591 | 70,338,097 | 69,746,120 591,977
TABLE III

SUMMARY OF TIMING RESULTS EXPRESSED IN RAW CPU CYCLES ON A 1-GHz PROCESSOR. IN THIS EXPERIMENT, WE ARE INTERESTED IN BOTH ALGORITHMIC
AND SYSTEMIC PREDICTABILITY WHILE TRACKING A 500- FRAME IMAGE SEQUENCE. CLEARLY, THE KERNEL MODE IS MUCH MORE PREDICTABLE
COMPARED TO THE USER MODE

Execution Mean St. Dev. Maximum Minimum Max-Min

Mode (Cycles) (Cycles) (Cycles) (Cycles) (Cycles)
User mode 3,511,707 | 17,354,746 | 331,489,486 1,500,398 329,989,088
Kernel mode 1,661,411 66,081 2,135,198 1,494,191 641,007

tion based spatial referencing (detailed in Appendix A). For
user mode, we link spatial referencing directly into the final
executable. To create the kernel mode, we modify the driver
program to call a virtual device driver that encapsulates the
user-level code.

Timing results using this testing configuration are summa-
rized in Table II. The results show definitively that spatial ref-
erencing run in kernel mode displays much greater systemic
predictability than the standard user-level configuration. It is
interesting to note that the user-level configuration can poten-
tially be slightly faster. This is likely explained by the differ-
ences in the way caching is handled in the two modes. What is
perhaps more important is the existence of significant outliers
in the user-level timings. These outliers are simply unaccept-
able in a real-time system and are likely caused by the memory
management system itself. Initially, the heap segment of the user
process must be increased several times to handle memory re-
quests, which leads to appreciable processing delays.

Having demonstrated systemic real-time predictability on
a single image frame under realistic run-time conditions, the
next step is to run the system on an actual retinal image feed in
real-time. This way we can measure the overall predictability
of the system including both systemic and algorithmic pre-
dictability. In this second experiment, we will use the second
application of interest—a 12-parameter tracking algorithm
described in Appendix B. The spatial referencing algorithm
described in Appendix A initializes this algorithm. The test data
consists of a preloaded sequence of 500 retinal images captured
at aresolution of 512 x 512 pixels, 30 frames/s, and 12 bits per
pixel. This reduced image size is obtained by 2 X 2 binning of
the charged-coupled device array in the Dalsa camera and is
done to improve the signal-to-noise ratio. Again, we create a
single user-level program to drive both a “kernel space” variant
and a “user space” variant of the proposed system.

In the sequence of 500 images, we successfully tracked 436
frames by registering them onto a preoperative retinal mosaic.
This is done with an average time of about 1.7 ms. (It is im-
portant to note that these times do not include seed point detec-
tion because in an actual system this will be done using a field
programmable gate-array at the frame grabber). The ability to
achieve such low processing time is essential. Since our camera

runs at 30 frames/s, we have a maximum of 33 ms of processing
time before the next frame. However, because the eye is in con-
stant motion during frame integration, each successive image
represents information that is potentially 33 ms old before pro-
cessing even begins. From a control standpoint, this creates an
inescapable risk that must be mitigated by minimizing the la-
tency of our system.

The timing results in Table III show definitive improvement in
predictability when using a kernel configuration. Again we note
the extreme outliers in user mode that generally occur the first
few times the algorithm is run. As before, we attribute this to the
inordinate number of sbrk() calls made as the dynamic memory
demands of the user-level process grow rapidly as processing
begins. This is further exemplified in Fig. 4, where we ran the
same experiment from the console without any system load or
the overhead introduced by X-Windows. Recall that under our
kernel implementation, the sbrk() call is emulated by a static
buffer that is linked directly to the object module. The paging
overhead incurred in user space as memory is allocated in non-
contiguous blocks from the pageable memory pool contributes
significantly to the observed variability in execution times. Ad-
mittedly, this effect may have more to do with the test than the
system, i.e., we are potentially observing an uncertainty prin-
ciple. Simply loading the 500 image frames into RAM signifi-
cantly disrupts the memory access patterns of a program in user
space. However, this example actually illustrates how nonpage-
able kernel memory allocation can significantly improve sys-
temic predictability.

Since kernel modules have no stack or heap segment, they
can be placed contiguously without generating memory frag-
ments larger than a single page. Unfortunately kernel modules
cannot always be loaded in this manner. However, from the
standpoint of the kernel’s virtual map, memory is contiguous
and cannot be swapped. This is clearly an effective strategy for
reducing real-time threats from paging that is evident empiri-
cally in our results. Although an improvement, this emulation
of real memory presents a problem when using memory map-
ping or DMA operations that require real contiguous memory.
In the Linux OS, as with most systems, the first 16 MB of real
memory is reserved for DMA and it is reasonable to assume that
most of this memory is available for our real-time needs.

150 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 8, NO. 2, JUNE 2004

140
120
100
m
§,80
o
.§60
* 40
20
O‘WWWMWM
- N O F 0 O N DO
<+ O N © © F ©® N K —
- - N NN O o <

frame number

@

140
120
100
80
60
40
20

time (ms)

Fig. 4. Timing sequence for a 500-frame tracking experiment run from the console without a system load. User and kernel space timings are given in (a) and (b),
respectively. Height of each bar indicates time in milliseconds required to successfully track each image frame. Note the high degree of variability throughout the
timing sequence while in user mode. Contrast this with the flat profile while in kernel mode, indicating a dramatic improvement in predictability.

V. CONCLUSIONS AND DISCUSSION

We have described a framework for establishing predictable
frame-rate computing on a standard Linux OS using COTS
hardware. We make use of a virtual device driver to emulate
a single process space directly in kernel without modifying
the application code. Our approach has the advantage of
allowing rapid prototyping on a native system that allows full
duplexing between kernel- and user-level code. The proposed
methodology is simple, subject only to a mild set of constraints
without requiring any nonstandard kernel modifications.

Establishing real-time operation in this manner promises
to be both efficient and cost effective but also formulates an
entirely new approach to real-time development of complex
frame-rate vision systems. This approach places the focus on
off-line algorithm development to achieve robust and efficient
solutions to a particular vision problem that when coupled with
our real-time execution environment results in the immediate
realization of a predictable hard real-time application. Algo-
rithm development is no longer bound by highly restrictive
low-level implementations and can instead readily incorporate
any software components that are known to be efficient and pre-
dictable. Shifting the focus to off-line algorithm development
rather than a specialized real-time implementation in order to
achieve efficiency and predictability is a significant departure
from standard real-time design methodologies. The fact that
this can be done using COTS components without the need for
additional proprietary or specialized hardware/software further
represents a substantially different approach to real-time devel-
opment. Since the demonstrated effectiveness of this approach
may in fact be unique to complex frame-rate vision systems,
our results are even more important to this application domain.

The key aspect of frame-rate vision systems is that they do
not generally require sophisticated event handling and asyn-
chronous processing. This allows us to use very basic aspects
of a standard Linux OS to establish predictable synchronous
cyclic execution in real-time. From the standpoint of a general
real-time solution, what is lacking is a sophisticated scheduling
mechanism. With such a mechanism, it may be possible to intro-
duce parallelism to an already existing off-line code base. The
key is to carefully expose the off-line components that need to be
run in parallel. Since we may not in general assume the off-line

code is thread safe, this poses a number of potential problems.
However, the techniques described in this work including func-
tion wrapping, interrupt masking, and the nonpreemptive nature
of the Linux kernel, may greatly reduce the effort needed to in-
troduce parallelism to an existing off-line code base. Our work
using Linux kernel modules could be a key stepping stone to-
ward such a design.

APPENDIX A

This appendix briefly summarizes the first major computer
vision application of interest—spatial referencing [Fig. 1(Box
A)]. In this application, each image frame from the camera is
aligned to a preoperative mosaic map of the retina. The retinal
vessels are the features used for registration that must be ex-
tracted at sufficient speed to permit frame-rate registration, and
with sufficient adaptability to cope with illumination and patient
variations. This is done using algorithms for fast exploratory
vessel tracing [29]-[33] and real-time spatial prioritization [9].

These algorithms proceed in three stages. First, sparse vessel
detection is performed over a sparse grid [Fig. 5(b)]. This step
also estimates the local image statistics and noise levels. These
positions, known as seeds, are refined and verified by testing for
the existence of a pair of sufficiently strong two-dimensional
antiparallel (opposite direction) edges [13] in a small region
around each seed. Prioritizing the grid analysis by analyzing the
angular patterns of seed points allows us to generate an early
yield of landmarks and landmark constellations [9]. The second
stage performs iterative tracing of the vasculature starting from
seed points [Fig. 5(b)] and detection of points where traces meet
or cross. The final stage refines these landmark points to sub-
pixel accuracy using the algorithm of Tsai et al. [33].

The vessel traces and landmarks permit precise registration
using algorithms that account for the unknown retinal curvature
and the weakly perspective imaging geometry using a 12-
parameter imaging model and robust hierarchical estimation
procedures [7]. These pair-wise registrations are further
processed to perform a joint registration of a set of (12-15)
images to construct mosaic families with subpixel accuracy
[7]. While these mosaics are independently useful as extended
visualization tools, they are even more useful as a basis for
spatial mapping of the retina. The retinal map is precomputed

TYRRELL et al.: EFFICIENT MIGRATION OF COMPLEX OFF-LINE COMPUTER VISION SOFTWARE TO REAL-TIME SYSTEM 151

Fig. 5.

Tllustrating the quasi-invariant indexing-based approach to fast spatial referencing: (a) sample digital retinal image; (b) results of opportunistic extraction

of a landmark constellation; (c—e) illustrating the same landmark constellation in two image frames and the mosaic, respectively; (f) illustrates for a constellation
of three landmarks, the invariant feature vector (QIFV) consisting of five components («, 3, €1, 82, 63). This vector can be looked up rapidly in a precomputed

hierarchical k — d tree database of QIFVs.

and stored prior to laser retinal surgery, and is an enabling data
structure for real-time spatial referencing.

Spatial referencing is the problem of registering a single
observed retinal image frame to the precomputed map during
laser surgery, as illustrated in Fig. 1(Box A). Such registration
avoids the drift and undetected failure problems encountered
in conventional frame-to-frame tracking methods [14]-[16]. In
essence, spatial referencing is an image registration problem,
but with extreme speed and accuracy requirements. This group
has recently published methods [8], [9] to meet these extreme
requirements using a combination of extensive precomputation
and the use of quasi-invariant feature vectors (QIFV) [34]-[36].
Pairs and triples of landmarks that are reasonably close to each
other (within about 20% of the image width) are formed into
“constellations.” A vector of similarity quasi-invariants—geo-
metric measurements that are approximately invariant under
scale, rotation, and translation—is computed from the constel-
lation [Fig. 5(c)—(e)]. QIFVs computed from all constellations
in all diagnostic images are stored in a hierarchical database
built from k£ — d trees [34] for fast lookup during the on-line
phase. To summarize, the complete spatial map consists of a
set of images, their features (traces, landmarks), the mosaic,
Euclidean distance maps [29] of the traces, a set of pair-wise

12-parameter quadratic spatial transformations linking the
images, and the k — d tree indexing database.

The QIFV driven database lookup generates several hy-
potheses representing landmark correspondences with the
spatial map. These hypotheses must be verified by computing
a robust measure of alignment of the vascular traces between
the real-time image frame and the stored map. This ordinarily
complex operation can be performed surprisingly fast by
subsampling the vasculature and using a precomputed digital
distance map of the traces. Verified correspondence hypotheses
produce crude four-parameter similarity transformation esti-
mates. They are refined in a series of steps that ultimately lead
to an image-wide 12-parameter transformation. If the estimated
alignment is not sufficiently accurate, the hypothesis is rejected
and another one is considered. Typically, just two to five such
trials are sufficient.

APPENDIX B

This section describes the second application algorithm of
interest—robust retinal tracking, indicated in Fig. 1 (Box B).
Although the spatial referencing application described in
Appendix A is extremely powerful and general, it has the

152 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 8, NO. 2, JUNE 2004

disadvantage of having computation requirements that are not
precisely predictable. The opportunistic nature of the algorithm
means that the number of hypotheses under consideration
cannot be predicted a priori. The algorithm described here
offers the attractive combination of precise computational
determinism, ability to verify results against the spatial map
described above, and spatial alignment that is robust and precise
for the most common case, namely small image motions. When
this algorithm fails, the full spatial referencing algorithm is
invoked as in [31], or the frame is rejected with the surgical
laser disabled.

In contrast to conventional feature-based tracking algorithms
[14]-[16] that attempt to correlate specific image features be-
tween frames, the present algorithm exploits the robust map-
based verification and refinement step of the spatial referencing
algorithm described in Appendix A. This approach provides
much-needed robustness and verifiability, as well as freedom
from the projective distortions caused by excessive drift.

The core of the spatial referencing algorithm is the iter-
ative-closest-point (ICP) algorithm [30]—that searches for a
transformation and a set of correspondences that minimize the
alignment error between a set of reference points between two
images. Given two sets of feature-point vectors (P = {p;}
in image I; and @ = {q;} in image I»), it finds the trans-
formation parameters, and associated set of correspondences
(C C P x @) that minimize an error norm of the following
form:

E©;0)= >

(1’1 1‘77)60

P (M)

g

where M (p;; ©) is a 12-dimensional quadratic spatial transfor-
mation mapping an image point p; in image I; to a point cor-
responding to q; in image I>. In the above equation, d(.) is
a Euclidean distance measure, p(-) is the monotonically non-
decreasing robust lost function proposed by Beaton and Tukey
[20], and o is the scaling parameter.

The ICP algorithm minimizes the above error measure when
C is not known in an iterative fashion by alternately fixing C,
minimizing F(#; C'), and re-estimating the point set C'. Hence,
the closest points are dynamic, changing until the algorithm
eventually converges to a stable fixed point. In our method, we
make use of a high-dimensional transform (12 parameters) and
incorporate a robust loss function through an M-estimator, as
well as utilizing a number of efficient data structures for iden-
tifying the closest points. We also incorporate a separate robust
map-based verification step rather than simply relying on the
minimum alignment error as determined by ICP.

The optimal transform parameters are estimated using the
IRLS method [20]. To ensure that the algorithm converges to a
global rather than a local minimum, this algorithm must be prop-
erly initialized. In our work, the verified transformation from
the previous frame serves this purpose. In other words, the al-
gorithm simply uses a set of extracted seed points distributed
over a coarse grid to determine the closest points in the preop-
erative retinal mosaic. For small motions, this initialization will
lead to a stable fixed point after a relatively few number of iter-
ations (typically five). If more machine cycles are available, in-
creasing the number of iterations showed excellent convergence

properties even for frames that overlapped by as little as 30%.
Large motions and other errors are readily detected based on
alignment accuracy relative to the spatial map.

This algorithm is made predictable by always selecting
a fixed subset of the most promising seed points from each
frame. At least twelve points are needed to constrain the
IRLS estimation. Doubling this number and adding another
seed point (25 seeds) achieves a breakdown point of 50%,
i.e., median alignment error that is robust to noise in half the
seed points. Again, if more machine cycles are available, this
number can be increased.

ACKNOWLEDGMENT

The authors would like to thank the staff at the Center for
Sight, especially Dr. H. L. Tanenbaum, anonymous human sub-
ject volunteers, and photographers G. Howe and M. Fish, for
extensive image acquisition assistance.

REFERENCES

[1] P. N. Monahan, K. A. Gitter, J. D. Eichler, and G. Cohen, “Evaluation
of persistence of subretinal neovascular membranes using digitized an-
giographic analysis,” Retina—J. Retinal and Vitreous Diseases, vol. 13,
no. 3, pp. 196-201, 1993.

[2] P.N.Monahan, K. A. Gitter, J. D. Eichler, G. Cohen, and K. Schomaker,

“Use of digitized fluorescein angiogram system to evaluate laser treat-

ment for subretinal neovascularization: technique,” Retina—J. Retinal

and Vitreous Diseases, vol. 13, no. 3, pp. 187-195, 1993.

R. Murphy, “Age-related macular degeneration,” Ophthalmology, vol.

9, pp. 696-971, 1986.

[4] J. M. Krauss and C. A. Puliafito, “Lasers in ophthalmology,” Lasers
Surgery and Medicine, vol. 17, pp. 102—-159, 1995.

[5] J. Federman, Ed., Retina and Vitreous. St. Louis, MO: Mosby, 1988.

[6] I. E. Zimmergaller, N. M. Bressler, and S. B. Bressler, “Treatment of

choroidal neovascularization—updated information from recent mac-

ular photocoagulation study group reports,” Int. Ophthalmology Clinics,

vol. 35, pp. 37-57, 1995.

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-

based algorithm for joint, linear estimation of high-order image-to-mo-

saic transformations: mosaicing the curved human retina,” IEEE Trans.

Pattern Anal. Machine Intell., vol. 24, pp. 412419, Mar. 2002.

H. Shen, C. V. Stewart, B. Roysam, G. Lin, and H. L. Tanenbaum,

“Frame-rate spatial referencing based on invariant indexing and align-

ment with application to laser retinal surgery,” IEEE Trans. Pattern

Anal. Machine Intell., vol. 25, pp. 379-384, Mar. 2003.

[9] G. Lin, C. V. Stewart, B. Roysam, K. L. Fritzsche, G. Yang, and

H. L. Tanenbaum, “Predictive scheduling algorithms for real-time

feature extraction and spatial referencing: Application to retinal image

sequences,” IEEE Trans. Biomed. Eng., vol. 51, pp. 115-125, Jan. 2004.

G. Hager and K. Toyama, “X vision: A portable substrate for real-time

vision applications,” Comput. Vision and Image Understanding, vol. 69,

no. 1, pp. 23-27, Jan. 1996.

P. Baglietto, M. Massimo, M. Migliardi, and N. Zingirian, “Image pro-

cessing on high-performance RISC systems,” Proc. IEEE, vol. 84, pp.

917-930, July 1996.

R. Polli and G. Valli, “An algorithm for real-time vessel enhancement

and detection,” Comput. Methods and Programs Biomed., vol. 52, pp.

1-22, 1997.

Y. Sun, R. Lucariello, and S. Chiaramida, “Directional low-pass filtering

for improved accuracy and reproducibility of stenosis quantification in

coronary arteriograms,” IEEE Trans. Med. Imag., vol. 14, pp. 242-248,

June 1995.

S. F. Barrett, M. R. Jerath, H. G. Rylander, and A. J. Welch, “Digital

tracking and control of retinal images,” Opt. Eng., vol. 1, no. 33, pp.

150-159, Jan. 1994.

S. F. Barrett, C. H. G. Wright, H. Zwick, M. Wilcox, B. A. Rockwell,

and E. Naess, “Efficiently tracking a moving object in two-dimensional

image space,” J. Elect. Imag., vol. 10, no. 3, pp. 1-9, July 2001.

M. S. Markow, H. G. Rylander, and A. J. Welch, “Real-time algorithm

for retinal tracking,” IEEE Trans. Biomed. Eng., vol. 40, pp. 1269-1281,

Dec. 1993.

3

[t}

[7

—

[8

—_—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

TYRRELL et al.: EFFICIENT MIGRATION OF COMPLEX OFF-LINE COMPUTER VISION SOFTWARE TO REAL-TIME SYSTEM 153

[17] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus, “A firm
real-time system implementation using commercial off-the-shelf hard-
ware and free software,” presented at the 4th IEEE Real Time Tech-
nology and Applications Symp. (RTAS), Denver, CO, June 1998.

M. Tyler and P. Saine, Ophthalmic Photography: Retinal Photography,
Angiography, and Electronic Imaging. London, U.K.: Butterworth,
2002.

[18]

[19] F.R.Hampel, P.J. Rousseeuw, E. N. Ronchetti, and W. A. Stahel, Robust
Statistics: The Approach Based on Influence Functions. New York:
Wiley, 1986.

P. W. Holland and R. E. Welsch, “Robust regression using iteratively
reweighted least-squares,” Commun. Statist.—Theor. Meth., vol. A6, pp.
813-827, 1977.

R. E. Buttazzo and C. Giorigio, Hard Real-Time Computing Sys-
tems—Predictable Scheduling Algorithms and Applications. Norwell,
MA: Kluwer, 1997, pp. 109-110.

P. A. Laplante, Ed., Real-Time Systems Design and Analysis: An Engi-
neer’s Handbook, 2nd ed. Piscataway, NJ: IEEE Press, 1996.

T. Maeda, “Safe execution of user programs in kernel mode using typed
assembly language,” Master’s Thesis, Univ. of Tokyo, 2002.

G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic, “TALx86: a realistic typed as-
sembly language,” in 1999 ACM SIGPLAN Workshop Compiler Support
for System Software, Atlanta, GA, May 1999, pp. 25-35.

M. Barabanov and V. Yodaiken, “Introducing real-time Linux,” Linux
J., vol. 34, pp. 19-23, 1997.

D. Lazenby, “Timesys Linux/RT (professional edition),” Linux J., no.
T7es, Article 21, Sept. 2000.

E. Siever, S. Spainhour, J. P. Hekman, and S. Figgins, Linux in a Nutshell,
3rd ed. Sebastopol, CA: O’Reilly Publishers, Aug. 2000.
GNU-Malloc [Online]. Available: hhtp://www.mit.edu/afs/sipb/ser-
vice/rtfm/src/gnu-malloc/

D. E. Becker, A. Can, H. L. Tanenbaum, J. N. Turner, and B. Roysam
et al., “Image processing algorithms for retinal montage synthesis, map-
ping, and real-time location determination,” in IMIA Yearbook of Med-
ical Informatics, D. Bemmel et al., Eds, Germany: International Medical
Informatics Association, Schattauer Press, 1999, pp. 433-446.

C. V. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative
closest point (ICP) algorithm with application to retinal image registra-
tion,” IEEE Trans. Med. Imag., vol. 22, pp. 1379-1394, Nov. 2003.

A. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and B. Roysam,
“Rapid automated tracing and feature extraction from live high-resolu-
tion retinal fundus images using direct exploratory algorithms,” IEEE
Trans. Inform. Technol. Biomed., vol. 3, pp. 125-138, June 1999.

H. Shen, B. Roysam, C. V. Stewart, J. N. Turner, and H. L. Tanen-
baum, “Optimal scheduling of tracing computations for real-time vas-
cular landmark extraction from retinal fundus images,” IEEE Trans. In-
Sform. Technol. Biomed., vol. 5, pp. 77-91, Mar. 2001.

C.-L. Tsai, C. V. Stewart, H. L. Tanenbaum, and B. Roysam, “Model-
based method for improving the accuracy and repeatability of estimating
vascular bifurcations and crossovers from retinal fundus images,” IEEE
Trans. Inform. Technol. Biomed., vol. 8, June 2004.

T. Binford and T. Levitt, “Quasiinvariants: Theory and exploitation,” in
Proc. DARPA Image Understanding Workshop, 1993, pp. 819-829.

J. S. Beis and D. G. Lowe, “Indexing without invariants in 3D object
recognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 21, pp.
1000-1015, Oct. 1999.

G. Borgefors, “Distance transformations in digital images,” Comput. Vis.
Graph. Image Process., vol. 34, no. 3, pp. 344-371, 1986.

[20]

[21]

[22]
[23]

[24]

[25]
[26]
[27]
(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

James Alexander Tyrrell received the Sc.B. degree
in geophysics/mathematics from Brown University,
Providence, RI, in 1996 and received the M.S. degree
in computer science from the Rochester Institute of
Technology, Rochester, NY, in 2002.

Since 2002, he has been a Research Assistant in
the Department of Electrical, Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Troy,
NY. From 1997 to 2001, he worked in the R&D De-
partment of Thomson Legal and Regulatory (West
Group), Rochester, NY, where his research interests
focused on natural language processing and machine learning. He is currently
interested in real-time systems, robust estimation techniques, computer vision,
and statistical signal processing.

Justin M. LaPre is a working toward the Ph.D. de-
gree in computer science at Rensselaer Polytechnic
Institute, Troy, NY.

His research interests include operating systems,
especially Linux and Mac OS X kernel programming,
networking, simulation, and computer architectures.

Christopher D. Carothers received the M.S. and
Ph.D degrees both from the College of Computing
at the Georgia Institute of Technology, Atlanta, in
December 1996 and September 1997, respectively.

He is an Assistant Professor of Computer Science
at Rensselaer Polytechnic Institute, Troy, NY. His
research interest is in large-scale parallel distributed
computations with emphasis on the modeling and
simulation of network systems.

Dr. Carothers received a National Science Founda-
tion CAREER Award in 2002 for his work on “Scal-
able, High-Performance, Network Simulations Using Reverse Computation.”
He has won two best paper awards (1999 and 2003) for his research in this
area and has published over 30 papers in the area of parallel and distributed
simulation. He has also served as a Guest Editor for the Society for Computer
Simulation (SCS) publications as well as serving on the program committee
of numerous conferences and workshops including the Workshop on Parallel
and Distributed Simulation (PADS) and the International Workshop on Mod-
eling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS). He will also serve as the 2006 Proceedings Editor for the Winter
Simulation Conference as well as the Program Chair for PADS 2005.

Badrinath Roysam (M’89) received the B.Tech de-
gree in electronics engineering from the Indian Insti-
tute of Technology, Madras, India, in 1984, and the
M.S. and D.Sc. degrees from Washington University,
St. Louis, MO, in 1987 and 1989, respectively.

He has been at Rensselaer Polytechnic Institute,
Troy, NY since 1989, where he is currently a Pro-
fessor in the Electrical, Computer and Systems En-
gineering Department. He is an Associate Director
of the Center for Subsurface Sensing and Imaging
Systems (CenSSIS)—a multiuniversity National Sci-
ence Foundation-sponsored engineering research center. He also holds an ap-
pointment in the Biomedical Engineering Department. His ongoing projects are
in the areas of two-, three-, and four-dimensional biomedical image analysis,
biotechnology automation, optical instrumentation, high-speed and real-time
computing architectures, and parallel algorithms.

Dr. Roysam is an Associate Editor for the IEEE TRANSACTIONS ON
INFORMATION TECHNOLOGY IN BIOMEDICINE. He is a member of the Mi-
croscopy Society of America, Society for Neuroscience, Society for Molecular
Imaging, and the Association for Research in Vision and Ophthalmology.

Charles V. Stewart (M’88) received the B.A. degree
in mathematical sciences from Williams College,
Williamstown, MA, in 1982, and the M.S. and Ph.D.
degrees in computer science from the University of
Wisconsin, Madison, in 1985 and 1988, respectively.

Currently, he is a Professor in the Department of
Computer Science, Rensselaer Polytechnic Institute,
Troy, NY. During the 1996-1997 academic year, he
spent a sabbatical at the GE Center for Research and
Development in Niskayuna, NY. His research inter-
ests include medical image analysis, computer vision,
robust statistics, and computational geometry.

Dr. Stewart is a Member of Sigma Xi and the ACM. In 1999, together with A.
Can and B. Roysam, he received the Best Paper Award at the IEEE Conference
on Computer Vision and Pattern Recognition.

